
On the Design and Evolution
of an Architecture for Federation

Stephen Soltesz, Soner Sevinc, David Eisenstat, Marc Fiuczynski, Larry Peterson
Department of Computer Science

Princeton University
35 Olden Street

Princeton, NJ 08540
<soltesz,ssevinc,deisenst,mef,llp@cs.princeton.edu>

Categories and Subject Descriptors
D.4.7 [Organization and Design]: Distributed Systems; C.2.1
[Network Architecture and Design]: Distributed Networks;
D.2.11 [Software Architectures]: Patterns; C.2.3 [Network
Operations]: Network Management

General Terms
Federation Architecture

Keywords
federation, virtualization, delegation

1. INTRODUCTION
PlanetLab enjoys a unique position of receiving contin-

ual feedback from the needs of an active user community.
As a result, there are no clear lines dividing one step from
the next in the cycle of design, implementation, and evalu-
ation. Over time, the challenge for PlanetLab maintenance
becomes balancing the trade-offs between satisfying short-
term needs of user convenience, research agendas, or infras-
tructure growth, and long-term needs, such as system in-
tegrity, sustainability, and coherence, both technologically
and for the community. After several years of experience
running a global, distributed systems and networking plat-
form, PlanetLab is entering a new design cycle.

The ultimate goal for PlanetLab has always been to enable
cooperation among all principals: service users, infrastruc-
ture owners, and researchers who invent or maintain ser-
vices. As the number of independent infrastructures grows,
and the number of organizations that hope to participate
either in the development of PlanetLab or the maintenance
and deployment of PlanetLab software, there is a new ten-
sion that spans beyond the original principals to the coop-
erating organizations who hope to federate.

Drawing on the last several years of experience with Plan-
etLab, this paper highlights the salient tensions experienced

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ROADS Warsaw ’07, July 11-12, 2007, Warsaw, Poland
Copyright 2007 ACM 978-1-59593-972-2/07/07 ...$15.00.

while developing support for delegated management and slice
creation, independent machine management and slice regis-
tration, and federation between cooperating organizations.
Ultimately, we propose a generic architecture suited to coop-
eration between a separable, management authority (MA)
and slice authority (SA) that share a simple set of abstrac-
tions, slices and nodes, a common name space, and autho-
rization model. This architecture provides the degree of
freedom necessary for federation that is not available in a
consolidated implementation. As well, the proposed archi-
tecture will permit flexible declaration and enforcement of
policies for resource sharing and user access.

Section two provides additional context for this discussion.
Section three outlines the original design of PlanetLab and
section four provides our experience with it. Finally, section
five contrasts the original design with a new proposal.

2. MOTIVATION
Symbiotic and cooperative agreements between infrastruc-

ture providers and service providers are common in a va-
riety of markets[5, 3, 2]. In all of these cases, there is
a clear separation between service implementation and re-
source provider. These correspond to two distinct functions,
one that manages and provides access to the physical infras-
tructure, and the other that provides registration, creation,
and access to a service on or over the physical infrastruc-
ture. Whether the infrastructure is donated or explicitly
purchased is not significant to the underlying relationship.

PlanetLab is also a member of this class of service. De-
signed on the same principle of separation between resource
owner and service developer, it has evolved into a consoli-
dated implementation administered by a single group. Until
recently, there were too few organizations with a goal of
managing a distributed infrastructure to connect users and
resource owners to motivate federation as a design goal. Pre-
viously, either the infrastructure was all owned by a single
organization, such as campus or business IT departments,
or access to independent domains was granted to a single
group or person, such as PlanetLab.

PlanetLab wishes to mediate the specific split between
infrastructure and services in the architecture. Today, pres-
sures on PlanetLab to federate with other distributed in-
frastructures is stressing the limits of a consolidated imple-
mentation. Assumptions exist regarding namespaces, au-
thorization model and policies needed to enforce trust that
are incompatible with federation. As PlanetLab continues
to develop during a climate where research infrastructures

are more common, to one where they are ubiquitous or indis-
tinguishable from the commodity Internet today, with this
proposal we seek to refine the description of the role and
responsibilities of the relevant authorities, the abstractions
over which they operate, as well as the namespaces, autho-
rization model and policies needed to preserve the trusted
relationship between peers.

3. CURRENT DESIGN
PlanetLab has operated, in one form or another, since

2002. The technologies used and the research agendas of
users have changed over the years, but the original need has
not changed: to create a platform that connects researchers
with remote infrastructure owners to enable distributed sys-
tems and networking research around the world.

The following sections describe the current design of Plan-
etLab. We outline 1) how PlanetLab acts as a trusted party,
between two mutually untrusting groups, 2) the boundaries
between the logical components of the architecture, and 3)
the primary abstractions that allow users to negotiate access
to PlanetLab. The outline of PlanetLab’s high-level contri-
bution will provide a context to evaluate the new design
proposed in section 5.

3.1 Trust
Prior to PlanetLab, a researcher who needed access to ma-

chines distributed throughout the network, was limited by
the number of personal contacts he had and the administra-
tive overhead of contacting as many remote sites as possible
to negotiate a personal account for his work. As the num-
ber of researchers grows, while the number of remote sites
remains limited due to preferred locations, the overall com-
plexity of this negotiation approaches O(N2).

By acting as a trusted intermediary, PlanetLab reduces
the operational overhead for all researchers performing such
a negotiation and all site owners permitting access from for-
eign users to their network. Because, both researchers and
member institutions only interacted with a single interme-
diary, the overall complexity is reduced to O(N).

Of course, for this to work, all principles involved, user,
owner, and PLC, must trust one another, and the incentives
for each to trust the other must be self-sustaining. Earlier
work defined these trust relationships between principles[7],
and both experience and the continued growth of PlanetLab
has shown them to be sustainable.

By establishing itself as an authority, the effort needed
to contact individual sites was consolidated to one organi-
zation. Researchers who wished to benefit from the infras-
tructure managed by PlanetLab would join as users. Owners
who wished to support a common effort for the benefit of
the community would leverage the remote administration
offered by PlanetLab.

3.2 Authority
The private PlanetLab package, MyPLC, bundles two

logically independent functions, the Management Author-
ity (MA) and Slice Authority (SA). Figure 1 represents the
PLC database separated by the MA and SA components. As
indicated by the direction of the arrows, users express their
preferences to the SA (u1), while owners express policy to
the MA (o1).

A management authority is responsible for some subset of
infrastructure machines: providing operational stability for

MA

API

SA

API

MA SA

PLC

UserOwner

Slice

Nodes

{Slices} Slices

{Nodes}

Resource

Node

o1 u1

o2 u2

Figure 1: The owner and user interacting through PLC,
whose database is divided between the MA and SA, before
policy or configuration state reaches the node.

those components, ensuring the components behave accord-
ing to acceptable use policies, and executing the resource
allocation wishes of the machine owner(o2). The MA main-
tains an authoritative list of machines, what sites they are
associated with, and relevant contact information for main-
tenance.

A slice authority is responsible for the behavior of a set of
slices, defined next, vouching for the users running experi-
ments in each slice and taking appropriate action should the
slice misbehave. The SA maintains a possibly disjoint list
of sites and users who can register, create or access slices.

The MA advertises the node list to the SA for assignment
to slices. And, in turn, the SA serves as the authoritative
source of slices. Working together, the SA advertises the
slices to the MA. Ultimately, the machines create slices ap-
proved of by the MA and as designated by the user (u2).

3.3 Abstractions: Slices & Nodes
One of the original goals of PlanetLab emphasized the dis-

tributed nature of the infrastructure. As such, the primary
value to PlanetLab was not access to computing resources,
which was already available with clusters, but access to mul-
tiple points of presence from machines, also called nodes,
throughout the global Internet.

The abstraction used to represent a researcher’s access to
some fraction of all machines in the distributed network is
a slice. Virtualization makes this possible. The virtual ma-
chines that runs on an individual node, is referred to as a
sliver. Although, many virtualization techniques exist, and
any could be suitable for isolating resources on individual
machines, PlanetLab has historically used VServer, which is
known to perform more favorably under the kind of work-
loads present on PlanetLab[8].

3.3.1 Slices
From a researcher’s perspective, a slice is an infrastructure-

wide network of computing and communication resources
capable of running an experiment or a wide-area network
service. From an operator’s perspective, slices are the pri-
mary abstraction for accounting and accountability; respec-
tively, resources are acquired and consumed by slices, and
external program behavior is traceable to a slice.

A slice is defined by a set of slivers spanning a set of
network components, plus an associated set of users that are
allowed to access those slivers for the purpose of running an
experiment on the managed infrastructure. That is, a slice
has a name, which is bound to a set of users associated with
the slice and a (possibly empty) set of slivers.

There are three unique stages in the lifetime of a slice,
each corresponding to an action (operation) that can be per-
formed on a slice:

• Register: the slice exists in name only and is bound to
a set of users;

• Create: the slice is instantiated on a set of nodes and
resources assigned to it;

• Access: the slice is accessed by, and runs code on behalf
of, a user.

A slice has to be registered and bound to a set of users
before it can be created, and it must be created before being
accessed.

Slices are registered in the context of a slice authority,
which takes responsibility for the behavior of the slice. A
slice is registered only once, but the set of users bound to it
can change over time. A slice registration has a finite life-
time; the responsible slice authority must refresh this regis-
tration periodically.

Creating a slice effectively configures the slice on a set of
nodes; this step can be repeated multiple times. In fact,
slice creation often involves two sub-steps: a slice is first
instantiated on a set of nodes with only best-effort resources
assigned to it, and later provisioned with additional (perhaps
guaranteed) resources, for example, for the duration of a
single experiment.

An experiment or service then “runs in” a slice. Multi-
ple experiments can be run in a single slice. For each run,
the experiment may change parameters but leave the slice
configuration unchanged, or it may change either the set
of nodes or the resources assigned on those nodes, or both.
How rapidly a slice can be reconfigured to support a new
experiment depends on the implementation of the instanti-
ation and provisioning operations.

3.3.2 Nodes
PlanetLab nodes are the primary building block of the

architecture. For example, a node might correspond to an
edge computer or the corresponding PCU used to assist with
remote administration.

A node encapsulates a collection of resources, including
physical resources (e.g., CPU, memory, disk, bandwidth)
logical resources (e.g., file descriptors, port numbers), and
synthetic resources (e.g., packet forwarding fast paths). These
resources can be contained in a single physical device or dis-
tributed across a set of devices (e.g., multiple NICs for in-
stance), depending on the nature of the hardware. However,
a given resource can belong to at most one node.

Each node is controlled via a node manager (NM), which
exports a well-defined, remotely accessible interface. The

node manager defines the operations available to user-level
services to manage the allocation of node resources to dif-
ferent users and their experiments.

A management authority (representing the wishes of the
owner) establishes policies about how the node’s resources
are assigned to users.

It must be possible to multiplex (slice) node resources
among multiple users. This can be done by a combination
of virtualizing the node (where each user acquires a virtual
copy of the node’s resources), or by partitioning the node
into distinct resource sets (where each user acquires a dis-
tinct partition of the node’s resources). In both cases, we
say the user is granted a sliver of the node. Each node must
include hardware or software mechanisms that isolate slivers
from each other, making it appropriate to view a sliver as a
“resource container.”

4. EXPERIENCE WITH THIS DESIGN
PlanetLab has anticipated the federation of infrastruc-

tures[7]. Yet, the currently centralized implementation in-
troduces a tension on the interaction between peers in terms
of code development, deployment, management, resource
naming, and operational scalability.

The following section illustrates by example a variety of
issues that we have needed to solve in recent times. The
sections that follow, outline how we are approaching a gen-
eralized architecture for federation from the starting point
of a centralized implementation.

4.1 A Brief History
PlanetLab began with a distributed design. The expec-

tation was that PlanetLab’s architecture would reflect the
design of the distributed systems it hoped to enable. Plan-
etLab provided a minimal Boot Manager that would boot
strap the first order services on the machine before it joined
the rest of the infrastructure.

However, this approach proved vulnerable to consistency
errors between PlanetLab Central (PLC) and state preserved
on the node. As a result, the implementation and function-
ality separated across the node and PLC was consolidated.
Now, the node serves as an explicit cache for state main-
tained at PLC.

Concordant with this shift, PlanetLab developed MyPLC,
a software package complete with all the backend services
needed to run the production PLC. In turn, this enabled
others to establish and manage their own distributed infras-
tructure with which PLC could federate[7].

Recently, PlanetLab has agreed to federate infrastructures
with OneLab Europe[1]. Prior to this agreement, PLC was
the only management authority responsible for developing
software and maintaining machines that were compatible
with the PlanetLab implementation. Now, OneLab will act
as a MA and maintain an independent set of machines. For
the user though, there will be no difference between ma-
chines managed by OneLab and machines managed by Plan-
etLab. A user will register, create, and access slices on these
machines as if they were managed by PLC, and vice versa.

As PlanetLab continues to grow in geographic scope, we
expect other autonomous regions to act as independent MAs
like OneLab. However, the result is a tension between the
consolidated implementation of PLC and the distributed
requirements of independent management authorities that
wish to maintain a common user experience. As well, many

MA SA

Node

Owner a1

a2

b2

b1

Figure 2: Owner delegated management expressing policies
to the MA or the node.

other distributed platforms already exist, such as VINI[4],
Emulab[9], and Everlab[6], among others. These platforms
often provide access to novel resources not available on oth-
ers, further motivating the need to access resources dis-
tributed across management authorities.

4.2 Delegated Management
Owners delegate administration of local machines to Plan-

etLab. This leverages the work done by PlanetLab to vet
users, develop code, provide technical and abuse support, as
well as issue tracking over time. There is nothing that pre-
vents site administrators from performing these steps them-
selves. However, there is clearly an advantage to delegating
to a trusted party.

The mechanism requires a minimal configuration:

• Remote power control with registered network address.

• Node hardware and registered network address.

• A boot image with a shared secret known only to the
node and PLC.

The remote power control is engaged to power on the node.
The node in turn boots from the boot image and the shared
secret is used in an authentication hand-shake with PLC. Fi-
nally, the Boot Manager retrieves a base image for the node
and installs or updates the system software on the persis-
tent disk. Clearly, as described the network administration
is outside the scope of PlanetLab. It is the responsibility
of local administrators to ensure that machines delegated to
PlanetLab have open network connectivity.

This does not imply loss of control for the local admin-
istrator. PlanetLab has always maintained a node owners
ability to express preferences for how resources are allo-
cated on his machines and monitor the traffic entering the
network. In the original PlanetLab implementation when
the authoritative state maintained by PlanetLab was dis-
tributed across both PLC and the nodes, node owner pref-
erences were recorded on the node. Figure 2 illustrates the
alternative paths to the node from either the MA of PLC or
the node owner. Because the node acted as an authoritative
repository for resource allocation policy, it was possible for
a mismatch between the owner’s preferences (b2), the user’s
expectations, the record maintained by PLC (b1), and what
NM ultimately enforced. The solution we adopted was to
consolidate all owner policy at PLC. Now the owner reg-
istered his preferences with the MA (a1), which was later
propagated to the node (a2).

MA SA

UserNode SCS

a1a2 b1

b2b4

a3/b5

b3

Figure 3: Delegated slice creation using the default asyn-
chronous method of slice delivery to the node, versus an in-
direct SCS.

While consolidating policy at PLC resolved the dilemma
for managing a single infrastructure, when multiple manage-
ment authorities exist, as they do with federation, the issue
returns. Two independent organizations again introduces
multiple sources of resource preference and policy informa-
tion. Clearly, though, whether policy decisions are enforced
globally, at the authority level, or locally at the node, the
path from root authority to the node should be unique.

4.3 Delegated Slice Creation
Users delegate the operation of creating accounts to PLC.

This leverages the work done by PlanetLab to manage ma-
chines, solicit participation from machine owners, and pro-
vide maintenance for the system software. Of course, a user
need not join PlanetLab for access to a remote account, but
there are clear advantages to doing so.

A consolidated implementation implies that all state on
the node arrives one way or another via the approval of
the central authority. This is no different for slice creation.
Node Manager periodically polls PLC for a list of all the
slices that should exist on this node. If the slice does not
exist, it is created. If the slice exists when it should not,
perhaps due to an expiration, it is deleted.

However, because of the polling, after a user registers a
slice at PLC, a delay is introduced between the time of reg-
istration and the time it is created on the node and avail-
able for access by the user. This delay is unacceptable for
certain experimental setups, such as Emulab. The Emu-
lab project uses Planetlab slices as a resource for its user’s
experiments. For this, Emulab requires synchronous slice
creation from the time their user submits an experiment to
the time it runs. However, PlanetLab only offers a default,
asynchronous slice creation service (SCS). To address this
conflict, Emulab has implemented an alternative SCS that
operates on behalf of a PlanetLab user. In doing so, the slice
(at registration time) delegates its creation to Emulab’s SCS,
rather than the default SCS.

Because, PLC serves as the slice authority (SA) there are
no other valid sources of slice names in the system. However,
delegation of slice creation offers additional flexibility in how
a registered slice is delivered to a node for creation. A user
with an account at both PlanetLab and Emulab can delegate
Emulab as the principal to create their service on specific
nodes.

To illustrate these two scenarios, figure 3 shows two paths
that the information needed by the Node Manager could
take. Along the top path, a user registers a slice name with
PLC’s SA (a1), later this information is propagated to the
NM (a2), and created (a3).

MA2

SA

Node2

Node1 MA1

User

SA2

MA

User2

User1SA1

Node

a) Independent MAs

b) Independent SAs

Figure 4: Federation using independent authorities for man-
agement or slice registration.

The second path of figure 3, also begins by registration at
PLC’s SA (b1), followed by the user handing control over to
a SCS (b2). Next, the SCS issues a GetTicket() operation
(b3), which is a cryptographically signed and serialized rep-
resentation of the intention of the MA to create a slice on
the given node. The system is semantically identical. The
only difference is that state previously within PLC is exter-
nalized. Finally, the SCS delivers the signed ticket to the
NM (b4) and the slice is created (b5).

As with delegated management, a consolidated implemen-
tation allows for delegated slice creation across users within
PlanetLab. However, with federation, it is not clear whether
delegated slice-creation can or should exist across federating
peers. For instance, can an authority issue tickets for ma-
chines managed by another MA? Should the user interact
directly with the second MA? Or is it necessary for the sec-
ond SCS to have an independent relationship with all MAs
it wishes to support?

4.4 Independent Authority
We are currently in the process of federating with OneLab

Europe. This agreement will have traits common to many
of the federating agreements to come. In this particular
case, each will maintain the reciprocal agreement to host
the other’s slices on nodes they manage. OneLab will take
responsibility for the machines within their geographic re-
gion and provide all aspects of infrastructure management
for these machine: software development and deployment, a
node registry, periodic monitoring and maintenance, as well
as the first and last point of contact for dispute resolution
between actions on machines they manage and conflicting
expectations of third parties by auditing user activity to
maintain a “chain of responsibility” from the slice authority
to the responsible user[7]. As well, each will provide user
accounts to researchers for the creation of services, a slice
registry, and assign roles to individual users for specific oper-
ations within the system. These responsibilities correspond
directly to the MA and SA.

Because the only implementation for federation between
peers is currently based on MyPLC, both partners have an
MA and SA. This leads to a situation where there are two in-
frastructures and two namespaces, respectively. With these

two components, the following descriptions outline two pos-
sible configurations using the current components for fed-
eration. Extracting from the limitations of these, section 5
presents the general architecture.

4.4.1 Management:
Two Infrastructures, One namespace

The original plan between OneLab and PlanetLab was
to federate only the management authorities. This would
create a model where nodes that were delegated for man-
agement to one organization were delegated-by-proxy to the
second organization, since the owner still delegates directly
with only one MA. For slice users these nodes would operate
with the same API and behave similarly. As well, because
there is only a single SA, there would be no confusion about
user roles or the issuing and honoring of slice tickets. Figure
4a illustrates independent management authorities with a
single SA.

With such an approach, a single slice registry interacts
with both management authorities, thereby allowing users
who join the single registry to access machines operated by
both MAs. With the current implementation, this approach
would be limited to a centralized registry. However, OneLab
Europe is an independent organization with unique research
agendas and methods for vetting and allowing users to join
their infrastructure. A centralized registry would not permit
the autonomy they require.

4.4.2 Slice Creation:
One Infrastructure, Two namespaces

Because OneLab based their infrastructure software on
MyPLC, they inherit a fully functional SA. Leveraging this
component as part of the federation agreement, each group
has the ability to register and create slices independently
of each other. While this approach would distinguish roles
between the two SAs, it complicates the adoption and inte-
gration of novel features within the infrastructure. Figure
4b illustrates independent slice authorities peering with a
single MA.

As distributed network infrastructures become more com-
mon and users more aware of them, users will expect either
(a) their favorite platform to integrate the popular features
of the others, or (b) the ability to seamlessly access the fea-
tures of any platform from a single account. Clearly, the first
case is not tenable in all situations, and in the second case
care is needed to preserve compatibility without sacrificing
flexibility or control of the platform development.

5. DESIGN EVOLUTION FOR FEDERATION
The preceding described the motivation for and the lim-

itations of a consolidated design and implementation. The
following discussion describes which aspects of the archi-
tecture need to be explicit to allow the implementation to
be de-consolidated to better facilitate cooperation in a fed-
erated environment. The principle users, owners, and two
primary authorities remain and are not discussed further
below. As well, the primary abstractions used between au-
thorities remain slices and nodes. However, the normative
interface is expanded and compatibility with the architec-
ture is extended to include globally unique names and iden-
tifiers for the mapping of resources and slices. As well, the
authorization model is refined such that principles are able
to access resources through a federated system and express

policy preferences to the relevant authority.

5.1 Selective Consolidation
The number of independent authorities increased with the

split between MA and SA. Now in a federated architecture,
the number increases again. Fortunately, the tasks per-
formed by the components does not change. Therefore, the
challenge for this architecture becomes specifying these tasks
sufficiently to allow conditional separability, thereby allow-
ing either a single or an arbitrary number of independent
authorities to implement each task from first dependency to
ultimate action.

Using the management authority as an example, the se-
quence of tasks roughly follows: code development, deploy-
ment, authority operation, node installation, slice creation.
A similar path could be traced for the slice authority. While
code development occurs at the beginning and slice creation
occurs at the very end, it should be possible to federate using
any combination of consolidated or separated components.

As an example, there are two forms of federation using
slices. In the first all slices registered by the SA will be
exposed to the MA, and created on the node. Alternately,
the MA could grant only a single slice, leaving the SA to
subdivide their single slice into an arbitrary number of sub-
slices. In the second case, the separation occurs closer to
the end of the list of tasks and on the node, as opposed to
at the authority level.

As well, the federation with OneLab has included several
stages where code sets were forked and then merged again.
However, once the implementation separation approaches all
components including the code that implements the norma-
tive interfaces, the remaining aspect that must be preserved
is the abstract interface.

5.2 Trust
The trust previously consolidated within PLC is now dis-

tributed across four components, the SA and MA of both
organizations. The trust between owner and MA as well as
the user and SA does not change, since from their vantage,
they only interact with a single entity both originally and
in a federated environment. The only weakness that could
exist would be between the interaction of MA and SA.

However, the trust between MA and SA existed previ-
ously within PLC, all be it implicitly. The difference in the
architecture is that the state exchange between MA and SA
is explicit and external. It then follows that the degrees of
trust that was previously implied is now explicit between
the MA and SA. As well, now the trust may be across mul-
tiple peers. But the relationship between any pair is not
fundamentally different from its original relationship in the
consolidated implementation.

5.3 Names and Identifiers
The previously consolidated namespace and identifiers within

PLC is now distributed across components, namely the SA
and MA of both organizations. In order for each component
to uniquely address objects in the system and across au-
thorities, externalized names and identifiers are needed. So,
although the state is distributed, the architecture preserves
one namespace.

For this end, the federation architecture will define unam-
biguous identifiers, simply called Global Identifiers (GID),
for the set of objects that make up the federated system.

GIDs form the basis for a correct and secure system, such
that an entity that possesses a GID is able to confirm that
the GID was issued in accordance with the SFA and has not
been forged, and to authenticate that the object claiming to
represent the GID is the one to which the GID was actually
issued.

A name registry maps strings to GIDs, as well as to other
domain-specific information about the corresponding object
(e.g., the URI at which the object’s manager can be reached,
an IP or hardware address for the machine on which the
object is implemented, the name and postal address of the
organization that hosts the object, and so on).

Following from the separation of SA and MA, there are
two registries, a node registry and a slice registry, both of
which define a hierarchical name space corresponding to the
hierarchy of authorities that have delegated the right to cre-
ate and name node and slice objects, respectively. These
registries assume a top-level naming authority trusted by
all entities, resulting in names of the form:

toplevel_authority.sub_authorityi.name

For example, “onelab” and “planetlab” might be top-level
authorities; it is possible that other similar authorities would
federate using this model.

This is not to imply that all federation is strictly among
top-level authorities, since even in the context of a single
top-level authority, we allow for multiple autonomous MAs
that agree to federate their resources. As well, to maintain
the trust relationship, no sub-authority would join an un-
trusted top-level authority, or does so at the risk of their
own credibility.

The node registry maintains information about a hierar-
chy of management authorities, along with the set of nodes
for which the MAs are responsible. This registry binds a
human-readable name for nodes and MAs to a GID, along
with a record of information that includes the URI at which
the node’s manager can be accessed; other attributes and
identifiers that might commonly be associated with a node
(e.g., hardware addresses, IP addresses, DNS names); and in
the case of an MA, contact information for the organization
and operators responsible for the set of nodes. For example,

planetlab.us.princeton.machine1

might name a node at the Princeton site of PlanetLab’s US
sub-authority. In this case, the planetlab.us.princeton man-
agement authority is responsible for the operational stability
of the set of nodes on their network.

The slice registry maintains information about a hierarchy
of slice authorities, along with the set of slices for which the
SAs have taken responsibility. This registry binds a human-
readable name for slices and SAs to a GID, along with a
record of information that includes email addresses, contact
information, and public keys for the set of users associated
with the slice; and in the case of an SA, contact information
for the organization and people responsible for the set of
slices. For example,

planetlab.fr.inria.dali

might name a slice created by the PlanetLab SA, which has
delegated to the French SA and then to INRIA, the right to
approve slices for individual projects (experiments), such as

SA1MA1

SA2MA2 SA2.sa3

 .sa4

SA1.sa1

 .sa2

MA2.ma3

 .ma4

MA1.ma1

 .ma2

Figure 5: A general view of peering and hierarchical registry
of MAs and SAs.

Dali. PlanetLab defines a set of expectations for all slices it
approves, and directly or indirectly vets the users assigned
to those slices.

Note that both the OneLab and PlanetLab management
authorities are expected to maintain an operational set of
nodes capable of hosting experiments, and their respective
slice authorities are expected to support slice creation on
behalf of network and distributed systems researchers. Be-
cause it is possible that other related facilities will federate
with OneLab and PlanetLab, and there will be other uses
of the greater federated system, we allow for the possibility
that other top-level slice authorities may support other poli-
cies and purposes. For example, there could exist a top-level
slice authority that permits slices running for-profit services.

Also note that the registries may be distributed, where a
server that implements one portion of the hierarchy includes
a pointer (URI) to a server that implements a sub-tree of
the hierarchy. We expect slice and management authorities
will often implement a registry server for the sub-tree of the
hierarchy for which they are responsible. Figure 5 illustrates
the generalized relationships discussed so far.

5.4 Authorization
Previously, there was no hierarchy of slice authorities.

And, the roles assigned to users existed in a flat role-space.
With the introduction of a hierarchical registry, the roles
for organizations, sites, or users can become a function of
the position within the graph. And it is possible to allow
the permission to perform an operation to extend down the
graph. As the number of authorities are increased each par-
ent authority grants a subset of permission to children.

Two primary classes of resources are protected by the au-
thorization mechanisms of this model. The first of these is
slices, the containers for user-level experiments. The sec-
ond is the collection of physical and logical resources imple-
mented as, or made available by, nodes.

For example, a SA (on behalf of a user) registers a slice
name, binds it to a GID, and thus produces a slice. Thus, the
authorization model for slice creation is based on controlling
access to the slice name space. And, in particular, the posi-
tion within the hierarchy that the name is positioned. The
slice name space consists of a naming hierarchy rooted at
a top-level SA. Below the top-level SA, intermediate nodes
in the naming tree represent intermediate slice authorities,
while the leaf nodes represent the slices themselves. Before
registering a sub-node of its portion of the name space, a
slice authority must use an off-line process to verify that it
is willing to vouch for the sub-authority, slice, or user. It
is assumed that each SA has been delegated authorization

authority over its portion of the slice name space, and need
not refer registration requests to a higher level authority.
For fail-safe reasons, a slice registration has a finite lifetime,
and it is necessary to periodically refresh the registration.

On the other hand, physical resources are encapsulated as
nodes. Each node has an associated management authority,
which represents the node’s owner. The MA is responsible
for defining and implementing the authorization policy gov-
erning use of the node. Tickets are used to implement this
model, where a ticket represents a principle’s right to (1)
create a sliver (perhaps with some initial resources bound
to it) on a node, (2) bind node resources to an existing slice,
and (3) control a running slice. All three rights can be dele-
gated. A ticket is essentially a resource specification signed
by a node’s MA, granting rights to allocate resources on one
or more nodes. The holder of the ticket must go back to the
node to split it into two tickets but the expectation is that
other tickets can be delegated by the slice identified in the
ticket.

5.5 Policy
Implied but missing is an explicit discussion of the pol-

icy used by both authorities and how conflicts are expressed
and resolved. Policies will be applied at three distinct levels:
1) between federating peers, 2) access control for individual
components, i.e. for slice creation, and 3) the resource allo-
cation on a given node.

Policies will be expressed by all principles involved: own-
ers, users, peers, and authority administrators. Between
federating peers, there will need to be a mechanism for me-
diating and resolving the overlap of policies held by one rel-
ative to the policies enforced by the other. Because tasks
are separable and the objects have role relationships defined
by position in the registration hierarchy, many policy state-
ments will become descriptions of operations and whether a
particular position in the graph can perform the given oper-
ation at every position below the graph. One very sensitive
operation is administrative access to nodes. This operation
might be reserved only for a root MA, as it is with Planet-
Lab. Child MAs that may share the root as a parent would
not be given this capability as a matter of policy.

At the second level, policies would control access to the
creation of slices. As discussed earlier, how users are allowed
to join and whether or not they are granted permission to
register, create, or access slices follows from their role today.
In terms of policy, there are two extremes of using slices to
federate: all unique slice names are shared with the peering
MA, or a single slice is exposed to the peering MA, and
the SCS of the SA has privilege to subdivide this slice into
smaller slices. The domain of the first option applies at
the authority level, while the second applies to the nodes
themselves. This leads to the final case, where the resource
allocation occurs on a given node.

Node allocation policy would come in the form of resource
limits for total disk space, bandwidth limits, and number
of slivers on a node. For instance, Emulab is limited by
the total number of slices they can create (10), due to the
current policies of the PlanetLab SA. But, rather than the
number of total slices, an alternate policy would count the
total number of slivers assigned across all machines.

6. CONCLUSION
This progression of steps has taken the reverse order or-

dinarily associated with system design. The traditional ap-
proach would begin with object specification, interface dec-
larations, user roles, and access controls for these objects.
The evolution of PlanetLab has followed the reverse path, at
times explicitly avoiding the definition of hard edges around
interfaces and objects to avoid the pitfall of balkanization
that can occur over time for missed design points.

As cooperation between organizations becomes common,
the next phase of the design cycle will be refining the inter-
faces for the components described here. The degree of suc-
cess PlanetLab has had to this point, reflects the suitability
of this alternative approach when there are too many factors
to consider at the beginning. Where rather than designing
first, the design evolves as a function of the mutually bene-
ficial resolution of the natural tension that comes from the
competing interests of cooperating groups.

7. REFERENCES
[1] Onelab project, 2007. http://www.one-lab.org.

[2] J. Altmann, M. Ion, and A. A. B. Mohammed.
Taxonomy of grid business models. In Lecture Notes in
Computer Science, volume 4685, pages 29–43, 2007.

[3] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer. Seti@home: an experiment in
public-resource computing. Commun. ACM,
45(11):56–61, 2002.

[4] A. Bavier, N. Feamster, M. Huang, L. Peterson, and
J. Rexford. In VINI veritas: Realistic and controlled
network experimentation. In Proceedings of ACM
SIGCOMM 2006, Pisa, Italy, September 2006.

[5] N. Feamster, L. Gao, and J. Rexford. How to lease the
internet in your spare time. SIGCOMM Comput.
Commun. Rev., 37(1):61–64, 2007.

[6] E. Jaffe, D. Bickson, and S. Kirkpatrick. Everlab - a
production platform for research in network
experimentation and computation. In Proceedings of the
21st Usenix LISA Conference., Dallas, Texas, Nov 2007.

[7] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir.
Experiences building planetlab. In Proceedings of the
7th USENIX Symposium on Operating System Design
and Implementation (OSDI ’06), Seattle, WA,
November 2006.

[8] S. Soltesz, H. Potzl, M. E. Fiuczynski, A. Bavier, and
L. Peterson. Container-based operating system
virtualization: A scalable, high-performance alternative
to hypervisors. In EuroSys 2007, Lisbon, Portugal,
March 2007.

[9] B. White, J. Lepreau, L. Stoller, R. Ricci,
S. Guruprasad, M. Newbold, M. Hibler, C. Barb, and
A. Joglekar. An Integrated Experimental Environment
for Distributed Systems and Networks. In Proc. 5th
OSDI, pages 255–270, Boston, MA, Dec 2002.

