
Lowering the Overhead of
Nonblocking Software Transactional Memory ∗

Virendra J. Marathe Michael F. Spear Christopher Heriot
Athul Acharya David Eisenstat William N. Scherer III Michael L. Scott

Computer Science Dept., University of Rochester
{vmarathe,spear,cheriot,aacharya,eisen,scherer,scott}@cs.rochester.edu

Abstract
Recent years have seen the development of several different sys-
tems for software transactional memory (STM). Most either em-
ploy locks in the underlying implementation or depend on thread-
safe general-purpose garbage collection to collect stale data and
metadata.

We consider the design of low-overhead, obstruction-free soft-
ware transactional memory for non-garbage-collected languages.
Our design eliminates dynamic allocation of transactional meta-
data and co-locates data that are separate in other systems, thereby
reducing the expected number of cache misses on the common-
case code path, while preserving nonblocking progress and requir-
ing no atomic instructions other than single-word load, store, and
compare-and-swap (or load-linked/store-conditional). We also em-
ploy a simple, epoch-based storage management system and intro-
duce a novel conservative mechanism to make reader transactions
visible to writers without inducing additional metadata copying or
dynamic allocation. Experimental results show throughput signifi-
cantly higher than that of existing nonblocking STM systems, and
highlight significant application-specific differences among con-
flict detection and validation strategies.

General Terms transactional memory, nonblocking synchro-
nization, obstruction freedom, storage management, visible readers

1. Introduction
Recent years have seen the development of several new systems for
software transactional memory (STM). Interest in these systems is
high because hardware vendors have largely abandoned the quest
for faster uniprocessors, and 40 years of evidence suggests that only
the most talented programmers can write good lock-based code.

In comparison to locks, transactions avoid the correctness prob-
lems of priority inversion, deadlock, and vulnerability to thread
failure, as well as the performance problems of lock convoying
and vulnerability to preemption and page faults. Perhaps most im-
portant, they free programmers from the unhappy choice between
concurrency and conceptual clarity: transactions combine, to first
approximation, the simplicity of a single coarse-grain lock with the
high-contention performance of fine-grain locks.

∗ Presented at TRANSACT: the First ACM SIGPLAN Workshop on Lan-
guages, Compilers, and Hardware Support for Transactional Computing,
held in conjunction with PLDI, Ottawa, Ontario, Canada, June 2006.

This work was supported in part by NSF grants CCR-0204344 and CNS-
0411127, financial and equipment support from Sun Microsystems Labora-
tories, and financial support from Intel.

Originally proposed by Herlihy and Moss as a hardware mech-
anism [16], transactional memory (TM) borrows the notions of
atomicity, consistency, and isolation from database transactions. In
a nutshell, the programmer labels a body of code as atomic, and
the underlying system finds a way to execute it together with other
atomic sections in such a way that they all appear to linearize [14]
in an order consistent with their threads’ other activities. When two
active transactions are found to be mutually incompatible, one will
abort and restart automatically. The ability to abort transactions
eliminates the complexity (and potential deadlocks) of fine-grain
locking protocols. The ability to execute (nonconflicting) trans-
actions simultaneously leads to potentially high performance: a
high-quality implementation should maximize physical parallelism
among transactions whenever possible, while freeing the program-
mer from the complexity of doing so.

Modern TM systems may be implemented in hardware, in soft-
ware, or in some combination of the two. We focus here on soft-
ware. Some STM systems are implemented using locks [2, 26, 32].
Others are nonblocking [4, 5, 9, 13, 21]. While there is evidence
that lock-based STM may be faster in important cases (notably
because it avoids the overhead of creating new copies of to-be-
modified objects), such systems solve only some of the traditional
problems of locks: they eliminate the crucial concurrency/clarity
tradeoff, but they remain vulnerable to priority inversion, thread
failure, convoying, preemption, and page faults. We have chosen in
our work to focus on nonblocking STM.

More specifically, we focus on obstruction-free STM, which
simplifies the implementation of linearizable semantics by allow-
ing forward progress to be delegated to an out-of-band contention
manager. As described by Herlihy et al. [12], an obstruction-free
algorithm guarantees that a given thread, starting from any fea-
sible system state, will make progress in a bounded number of
steps if other threads refrain from performing conflicting opera-
tions. Among published STM systems, DSTM [13], WSTM [9],
ASTM [21], and (optionally) SXM [5] are obstruction-free. DSTM,
ASTM, and SXM employ explicitly segregated contention manage-
ment modules. Experimentation with these systems confirms that
carefully tuned contention management can dramatically improve
performance in applications with high contention [5, 6, 27–29].

Existing STM systems also differ with respect to the granularity
of sharing. A few, notably WSTM [9] and (optionally) McRT [26],
are typically described as word-based, though the more general
term might be “block-based”: they detect conflicts and enforce
consistency on fixed-size blocks of memory, independent of high-
level data semantics. Most proposals for hardware transactional
memory similarly operate at the granularity of cache lines [1, 8, 23–
25]. While block-based TM appears to be the logical choice for
hardware implementation, it is less attractive for software: the need
to instrument all—or at least most—load and store instructions

1 2006/6/1

may impose unacceptable overheads. In the spirit of traditional file
system operations, object-based STM systems employ an explicit
open operation that incurs the bookkeeping overhead once, up
front, for all accesses to some language-level object within a given
transaction. The rest of this paper focuses on object-based STM.

Object-based STM systems are often but not always paired with
object-oriented languages. One noteworthy exception is Fraser’s
OSTM [4], which supports a C-based API. DSTM and ASTM are
Java-based. SXM is for C#. Implementations for languages like
these benefit greatly from the availability of automatic garbage
collection (as does STM Haskell [10]). Object-based STM systems
have tended to allocate large numbers of dynamic data copies and
metadata structures; figuring out when to manually reclaim these is
a daunting task.

While recent innovations have significantly reduced the cost of
STM, current systems are still nearly an order of magnitude slower
than lock-based critical sections for simple, uncontended opera-
tions. A major goal of the work reported here is to understand the
remaining costs, to reduce them wherever possible, and to explain
why the rest are unavoidable. Toward this end we have developed
the Rochester Software Transactional Memory runtime (RSTM),
which (1) employs only a single level of indirection to access data
objects (rather than the more common two), thereby reducing cache
misses, (2) avoids dynamic allocation or collection of per-object or
per-transaction metadata, (3) avoids tracing or reference counting
garbage collection altogether, and (4) supports a variety of options
for conflict detection and contention management.

RSTM is written in C++, allowing its API to make use of
inheritance and templates. An equivalent API could also be created
for C, though it would be less convenient. We do not yet believe the
system is as fast as possible, but preliminary results suggest that it
is a significant step in the right direction, and that it is convenient,
robust, and fast enough to provide a highly attractive alternative to
locks in many applications.

In Section 2 we briefly survey existing STM systems, focus-
ing on the functionality they must provide and the overheads they
typically suffer. Section 3 introduces our RSTM system, focusing
on metadata management, storage management, and the C++ API.
Section 4 presents performance results. We compare RSTM to both
coarse and fine-grain locking on a variety of common microbench-
marks. (The technical report version of this paper [22] includes
breakdown numbers that apportion system overhead among mem-
ory management, data copying, conflict detection, contention man-
agement, and other object and transaction bookkeeping.) Section 5
summarizes our conclusions and enumerates issues for future re-
search.

2. Existing STM Systems
Existing STM systems can be categorized in many ways, several
of which are explored in our previous papers [2, 19, 20, 30]. All
share certain fundamental characteristics: shared memory is orga-
nized as a collection of logical or physical blocks, which deter-
mine the granularity at which accesses may be made. A transaction
that wishes to update several blocks must first acquire ownership
of those blocks. Ownership resembles a revocable (“stealable”)
lock [11]. Any transaction that wishes to access an acquired block
can find the descriptor of the transaction that owns it. The descrip-
tor indicates whether the owner is active, committed, or aborted. A
block that belongs to an active transaction can be stolen only if the
stealer first aborts the owner.

Acquisition is the hook that permits conflict detection: it makes
writers visible to one another and to readers. Acquisition can occur
any time between the initial access to a block and final transaction
commit. Later acquisition allows greater speculation in TM imple-
mentations, and provides more opportunity for potentially conflict-

ing transactions to execute in parallel. Parallelism between a writer
and a group of readers can be 100% productive if the writer finishes
last. Parallelism among multiple writers is more purely speculative:
only one can commit, but there is in general no way to tell up front
which one it “ought” to be. Once readers or writers are visible,
choosing the circumstances under which to steal a block (and thus
to abort the owner) is the problem of contention management.

2.1 Major Design Decisions
As noted in Section 1, most STM proposals work at the granular-
ity of language-level objects, accessed via pointers. A transaction
that wishes to access an object opens it for read-only or read-write
access. (An object already open for read-only access may also be
upgraded to read-write access.) If the object may be written, the
transaction creates a new copy on which to make modifications.
Some time prior to committing, the transaction must acquire each
object it wishes to modify, and ensure that no other transaction has
acquired any of the objects it has read. Both old and new versions of
acquired objects remain linked to system metadata while the trans-
action is active. A one-word change to the transaction descriptor
implicitly makes all new versions valid if the transaction commits,
or restores all old versions if it aborts.

Metadata organization. Information about acquired objects
must be maintained in some sort of transactional metadata. This
metadata may be organized in many ways. Two concrete possibil-
ities appear in Figures 1 and 2. In the DSTM of Herlihy et al. [1],
(Figure 1), an Object Header (pointer) points at a Locator structure,
which in turn points at old and new copies of the data, and at the
descriptor of the most recent transaction to acquire the object. If
the transaction has committed, the new copy of the data is current.
If the transaction has aborted, the old copy of the data is current. If
the transaction is active, the data cannot safely be read or written
by any other transaction. A writer acquires an object by creating
and initializing a new copy of the data and a new Locator structure,
and installing this Locator in the Object Header using an atomic
compare-and-swap (CAS) instruction.1

In the OSTM of Fraser and Harris [3], (Figure 2), an Object
Header usually points directly at the current copy of the data. To
acquire an object for read-write access, a transaction changes the
Object Header to point at the transaction descriptor. The descriptor,
in turn, contains lists of objects opened for read-only or read-write
access. List entries for writable objects include pointers to old and
new versions of the data. The advantage of this organization is
that a conflicting transaction (one that wishes to access a currently
acquired object) can easily find all of its competitor’s metadata.
The disadvantage is that it must peruse the competitor’s read-write
list to find the current copy of any given object. We refer to the
DSTM approach as per-object metadata; we refer to the OSTM
approach as per-transaction metadata. Our RSTM system uses per-
object metadata, but it avoids the need for Locators by merging
their contents into the newer data object, which in turn points to the
older. Details can be found in Section 3.

Conflict detection. Existing STM systems also differ in the
time at which writers acquire objects and perform conflict de-
tection. Some systems, including DSTM, SXM [5], WSTM [9],
and McRT [26], are eager: writers acquire objects at open time.
Others, including OSTM, STM Haskell [10], and Transactional
Monitors [32], are lazy: they delay acquires until just before com-
mit time. Eager acquire allows conflicts between transactions to
be detected early, possibly avoiding useless work in transactions
that are doomed to abort. At the same time, eager acquire admits

1 Throughout this paper we use CAS for atomic updates. In all cases load-
linked/store-conditional would be equally acceptable.

2 2006/6/1

Locator

Transaction

New Data

Old Data

Data Object −

new version

Data Object −

old version

Object Header

Status

Status

Read−Only list

Read−Write list

h
ea

d
er

o
ld

 d
at

a

n
ew

 d
at

a

n
ex

t
h
an

d
le

Object Handles

Object Header

Transaction Descriptor

Data Object −

new version

Data Object −

old version

Figure 1. The Dynamic Software Transactional Mem-
ory (DSTM) of Herlihy et al. A writer acquires an ob-
ject at open time. It creates and initializes a new Loca-
tor (with a pointer to a new copy of the previously valid
Data Object), and installs this Locator in the Object
Header using an atomic compare-and-swap instruction.

Figure 2. The Object-Based Software Transactional Memory (OSTM) of Fraser
and Harris. Objects are added to a transaction’s read-only and read-write lists at
open time. To acquire an object, a writer uses a compare-and-swap instruction
to swing the Object Header’s pointer from the old version of the Data Object to
the Transaction Descriptor. After the transaction commits (or aborts), a separate
cleanup phase swings the pointer from the Transaction Descriptor to the new (or
old) version of the Data Object.

the possibility that a transaction will abort a competitor and then
fail to commit itself, thereby wasting any work that the aborted
competitor had already performed. Lazy acquire has symmetric
properties: it may allow doomed transactions to continue, but it
may also overlook potential conflicts that never actually materi-
alize. In particular, lazy acquire potentially allows short-running
readers to commit in parallel with the execution of a long-running
writer that also commits.

In either case—eager or lazy conflict detection—writers are
visible to readers and to writers. Readers may or may not, however,
be visible to writers. In the original version of DSTM, readers are
invisible: a reader that opens an object after a writer can make an
explicit decision as to which of the two transactions should take
precedence, but a writer that opens an object after a reader has no
such opportunity. Newer versions of DSTM add an explicit list of
visible readers to every transactional object, so writers, too, can
detect concurrent readers. The visibility of readers also has a major
impact on the cost of validation, which we discuss later in this
section. Like our Java-based ASTM system [2], RSTM currently
supports both eager and lazy acquire. It also supports both visible
and invisible readers. The results in Section 4 demonstrate that all
four combinations can be beneficial, depending on the application.
Adapting intelligently among these is a focus of ongoing work.

Contention management. An STM system that uses lazy ac-
quire knows the complete set of objects it will access before it ac-
quires any of them. It can sort its read-write list by memory address
and acquire them in order, thereby avoiding circular dependences
among transactions and, thus, deadlock. OSTM implements a sim-
ple strategy for conflict resolution: if two transactions attempt to
write the same object, the one that acquires the object first is consid-
ered to be the “winner”. To ensure nonblocking progress, the later-
arriving thread (the “loser”) peruses the winner’s metadata and re-
cursively helps it complete its commit, in case it has been delayed
due to preemption or a page fault. As a consequence, OSTM is able
to guarantee lock freedom [15]: from the point of view of any given
thread, the system as a whole makes forward progress in a bounded
number of time steps.

Unfortunately, helping may result in heavy interconnect con-
tention and high cache miss rates. Lock freedom also leaves open
the possibility that a thread will starve, e.g. if it tries repeatedly
to execute a long, complex transaction in the face of a continual
stream of short conflicting transactions in other threads.

Many nonblocking STM systems, including DSTM, SXM,
WSTM, and ASTM, provide a weaker guarantee of obstruction
freedom [1] and then employ some external mechanism to main-
tain forward progress. In the case of DSTM, SXM, and ASTM,
this mechanism takes the form of an explicit contention manager,
which prevents, in practice, both livelock and starvation. When a
transaction A finds that the object it wishes to open has already
been acquired by some other transaction B, A calls the contention
manager to determine whether to abort B, abort itself, or wait a
while in the hope that B may complete. The design of contention
management policies is an active area of research [6, 7, 27–29].
RSTM is also obstruction-free. The experiments reported in Sec-
tion 4 use the “Polka” policy we devised for DSTM [28].

Validating Readers. Transactions in a nonblocking object-based
STM system create their own private copy of each to-be-written
Data Object. These copies become visible to other transactions at
acquire time, but are never used by other transactions unless and
until the writer commits, at which point the data object is im-
mutable. A transaction therefore knows that its Data Objects, both
read and written, will never be changed by any other transaction.
Moreover, with eager acquire a transaction A can verify that it still
owns all of the objects in its write set simply by checking that the
status word in its own transaction descriptor is active: to steal one
of A’s objects, a competing transaction must first abort A.

But what about the objects in A’s read set or those in A’s write
set for a system that does lazy acquire? If A’s interest in these
objects is not visible to other transactions, then a competitor that
acquires one of these objects will not only be unable to perform
contention management with respect to A (as noted in the para-
graph on conflict detection above), it will also be unable to inform
A of its acquire. While A will, in such a case, be doomed to abort
when it discovers (at commit time) that it has been working with
an out-of-date version of the object, there is a serious problem in-
between: absent machinery not yet discussed, a doomed transaction
may open and work with mutually inconsistent copies of differ-
ent objects. If the transaction is unaware of such inconsistencies it
may inadvertently perform erroneous operations that cannot be un-
done on abort. Certain examples, including address/alignment er-
rors and illegal instructions, can be caught by establishing an appro-
priate signal handler. One can even protect against spurious infinite
loops by double-checking transaction status in response to a peri-
odic timer signal or (with compiler support or binary rewriting) on

3 2006/6/1

the back edges of outermost loops. Absent complete sandboxing,
however [31] (implemented via compiler support or binary rewrit-
ing), we do not consider it feasible to tolerate inconsistency: use of
an invalid data or code pointer can lead to modification of arbitrary
(nontransactional) data or execution of arbitrary code.2

In the original version of DSTM, with invisible readers, a trans-
action avoids potential inconsistency by maintaining a private read
list that remembers all values (references) previously returned by
read. On every subsequent read the transaction checks to make
sure these values are still valid, and aborts if any is not. Unfortu-
nately, for n read objects, this incremental validation incurs O(n2)
aggregate cost. Visible readers solve the problem: a writer that wins
at contention management explicitly aborts all visible readers of an
object at acquire time. Readers, for their part, can simply double-
check their own transaction status when opening a new object—an
O(1) operation. Unfortunately, visible readers obtain this asymp-
totic improvement at the expense of a significant increase in con-
tention: by writing to metadata that would otherwise only be read,
visible readers tend to invalidate useful lines in the caches of other
readers.

Memory Management. Since most STM systems do not use sig-
nals to immediately abort doomed transactions, some degree of au-
tomatic storage reclamation is necessary. For example, if transac-
tion A reads an object O invisibly and is then aborted (implicitly)
by transaction B acquiring O, it is possible for A to run for an ar-
bitrary amount of time, reading stale values from O. Consequently,
even if B commits, it cannot reclaim space for the older version of
O until it knows that A has detected that it has been aborted.

This problem is easily handled by a general purpose garbage
collector. However, in languages such as C++ that permit ex-
plicit memory management, we believe that the reclamation policy
should be decided by the programmer; existing code that carefully
manages its memory should not have to accept the overhead of a
tracing collector simply to use transactions. Instead we provide in
RSTM an epoch-based collector for transactional objects.

2.2 Potential Sources of Overhead
In trying to maximize the performance of STM, we must consider
several possible sources of overhead:

Bookkeeping. Object-based STM typically requires at least n+1
CAS operations to acquire n objects and commit. It may require an
additional n CASes for post-commit cleanup of headers. Additional
overhead is typically incurred for private read lists and write lists.
These bookkeeping operations impose significant overhead in the
single-thread or low-contention case. In the high-contention case
they are overshadowed by the cost of cache misses. RSTM employs
preallocated read and write lists in the common case to minimize
bookkeeping overhead, though it requires 2n + 1 CASes. Cache
misses are reduced in the presence of contention by employing
a novel metadata structure: as in OSTM, object headers typically
point directly at the current copy of the data; but as in DSTM, the

2 Suppose that m() is a virtual method of parent class P, from which child
classes C1 and C2 are derived. Suppose further that C2.m() cannot be called
safely from transactional code (perhaps it modifies global data under the
assumption that some lock is held). Now suppose that transaction T reads
objects x and y, where y contains a reference to a P and x identifies the type
of the reference in y as a (transaction-safe) C1 object. Unfortunately, after
T reads x but before it reads y, another transaction modifies both objects,
putting a C2 reference into y and recording this fact in x. Because x has
been modified, T is doomed to abort, but if it does not abort right away, it
may read the C2 reference in y and call its unsafe method m(). While this
example is admittedly contrived, it illustrates a fundamental problem: type
safety is insufficient to eliminate the need for validation.

current copy of the data can always be found with at most three
memory accesses. Details appear in Section 3.

Memory management. Both data objects and dynamically al-
located metadata (transaction descriptors, DSTM Locators, OSTM
Object Handles) require memory management. In garbage-collected
languages this includes the cost of tracing and reclamation. In the
common case, RSTM avoids dynamic allocation altogether for
transaction metadata; for object data it marks old copies for dele-
tion at commit time, and lazily reclaims them using a lightweight,
epoch-based scheme.

Conflict Resolution. Both the sorting required for deadlock
avoidance and the helping required for conflict resolution can incur
significant overhead in OSTM. The analogous costs in obstruction-
free systems—for calls to a contention manager—appear likely to
be lower in almost all cases, though it is difficult to separate these
costs cleanly from other factors.

In any TM system one might also include as conflict resolution
overhead the work lost to aborted transactions or to spin-based
waiting. We believe that obstruction-free systems have a better
chance of minimizing this useless work, because they permit the
system or application designer to choose a contention management
policy that matches (or adapts to) the access patterns of the offered
workload [28].

Validation. RSTM is able to employ both invisible and visible
readers. As noted above, visible readers avoid O(n2) incremental
validation cost at the expense of potentially significant contention.
A detailed evaluation of this tradeoff is the subject of future work.
In separate work we have developed a hardware mechanism for
fast, contention-free announcement of read-write conflicts [3].

Visible readers in DSTM are quite expensive: to ensure lineariz-
ability, each new reader creates and installs a new Locator con-
taining a copy of the entire existing reader list, with its own id
prepended. RSTM employs an alternative implementation that re-
duces this overhead dramatically.

Copying. Every writer creates a copy of every to-be-written ob-
ject. For small objects the overhead of copying is dwarfed by other
bookkeeping overheads, but for a large object in which only a small
change is required, the unneeded copying can be significant. We are
pursuing hardware assists for in-place data update [3], but this does
nothing for legacy machines, and is beyond the scope of the current
paper. For nonblocking systems built entirely in library software we
see no viable alternative to copies.3

3. RSTM Details
In Section 2 we noted that RSTM (1) adopts a novel organization
for metadata, with only one level of indirection in the common
case; (2) avoids dynamic allocation of anything other than (copies
of) data objects, and provides a lightweight, epoch-based collector
for data objects; and (3) employs a lightweight heuristic for visible
reader management. The first three subsections below elaborate on
these points. Section 3.4 describes the C++ API.

3.1 Metadata Management
RSTM metadata is illustrated in Figure 3. Every shared object
is accessed through an Object Header, which is unique over the
lifetime of the object. The header contains a pointer to the Data
Object (call it D) allocated by the writer (call it W) that most
recently acquired the object. (The header also contains a list of
visible readers; we defer discussion of these to Section 3.2.) If the
low bit of the New Data pointer is zero, then D is guaranteed to be

3 With compiler support, rollback is potentially viable, provided we are
willing to instrument most loads.

4 2006/6/1

Transaction

Descriptor

Data Object –

new version

Status

New Data Owner

Visible Reader 1 Old Data

Visible Reader n

Object Header
Data Object –

old version

Clean Bit

Figure 3. RSTM metadata. Transaction Descriptors are preallo-
cated, one per thread (as are private read and write lists [not
shown]). A writer acquires an object by writing the New Data
pointer in the Object Header atomically. The Owner and Old
Data in the Data Object are never changed after initialization. The
“clean” bit in the Header indicates that the “new” Data Object is
current, and that the Transaction Descriptor of its Owner may have
been reused. Visible Readers are updated non-atomically but con-
servatively.

the current copy of the data, and its Owner and Old Data pointers
are no longer needed. If the low bit of the New Data pointer is one,
then D’s Owner pointer is valid, as is W ’s Transaction Descriptor,
to which that pointer refers. If the Status field of the Descriptor is
Committed, then D is the current version of the object. If the Status
is Aborted, then D’s Old Data pointer is valid, and the Data Object
to which it refers (call it E) is current. If the Status is Active, then
no thread can read or write the object without first aborting W.4

E’s Owner and Old Data fields are definitely garbage; while they
may still be in use by some transaction that does not yet know it is
doomed, they will never be accessed by a transaction that finds E
by going through D.

To avoid dynamic allocation, each thread reuses a single stati-
cally allocated Transaction Descriptor across all of its transactions.
When it finishes a transaction, the thread traverses its local write
list and attempts to clean the objects on the list. If the transac-
tion commits successfully, the thread simply tries to CAS the low
bit of the New Data pointer from one to zero. If the transaction
aborted, the thread attempts to change the pointer from a dirty ref-
erence to D (low bit one) to a clean reference to E (low bit zero).
If the CAS fails, then some other thread has already performed
the cleanup operation or subsequently acquired the object. In ei-
ther event, the current thread marks the no-longer-valid Data Ob-
ject for eventual reclamation (to be described in Section 3.3). Once
the thread reaches the end of its write list, it knows that there are no
extant references to its Transaction Descriptor, so it can reuse that
Descriptor in the next transaction.

Because the Owner and Old Data fields of Data Objects are
never changed after initialization, and because a Transaction De-
scriptor is never reused without cleaning the New Data pointers in
the Object Headers of all written objects, the status of an object
is uniquely determined by the value of the New Data pointer (this
assumes that Data Objects are never reused while any transaction
might retain a pointer to them; see Section 3.3). After following
a dirty New Data pointer and reading the Transaction Descriptor’s
Status, transaction T will attempt to clean the New Data pointer in
the header or, if T is an eager writer, install a new Data Object. In

4 We have designed, but not yet implemented, an extension that would allow
readers to use the old version of the data while the current owner is Active,
in hopes of finishing before that owner commits.

either case the CAS will fail if any other transaction has modified
the pointer in-between, in which case T will start over.

At the beginning of a transaction, a thread sets the status of
its Descriptor to Active. On every subsequent open of object A
(assuming invisible readers), the thread (1) acquires A if opening it
eagerly for write; (2) adds A to the private read list (in support of
future validations) or write list (in support of cleanup); (3) checks
the status word in its Transaction Descriptor to make sure it hasn’t
been aborted by some other transaction (this serves to validate
all objects previously opened for write); and (4) incrementally
validates all objects previously opened for read. Validation entails
checking to make sure that the Data Object returned by an earlier
open operation is still valid—that no transaction has acquired the
object in-between.

To effect an eager acquire, the transaction:

1. reads the Object Header’s New Data pointer.

2. identifies the current Data Object, as described above.

3. allocates a new Data Object, copies data from the old to the
new, and initializes the Owner and Old Data fields.

4. uses a CAS to update the header’s New Data pointer to refer to
the new Data Object.

5. adds the object to the transaction’s private write list, so the
header can be cleaned up on abort.

As in DSTM, a transaction invokes a contention manager if
it finds that an object it wishes to acquire is already owned by
some other active transaction. The manager returns an indication
of whether the transaction should abort the competitor, abort itself,
or wait for a while in the hope that the competitor will complete.

3.2 Visible Readers
Visible readers serve to avoid the aggregate quadratic cost of incre-
mentally validating invisible reads. A writer will abort all visible
readers before acquiring an object, so if a transaction’s status is
still Active, it can be sure that its visible reads are still valid. At
first blush one might think that the list of readers associated with
an object would need to be read or written together with other ob-
ject metadata, atomically. Indeed, recent versions of DSTM ensure
such atomicity. We can obtain a cheaper implementation, however,
if we merely ensure that the reader list covers the true set of visible
readers—that it includes any transaction that has a pointer to one of
the object’s Data Objects and does not believe it needs to validate
that pointer when opening other objects. Any other transaction that
appears in the reader list is vulnerable to being aborted spuriously,
but if we can ensure that such inappropriate listing is temporary,
then obstruction freedom will not be compromised.

To effect this heuristic covering, we reserve room in the Object
Header for a modest number of pointers to visible reader Transac-
tion Descriptors. We also arrange for each transaction to maintain
a pair of private read lists: one for objects read invisibly and one
for objects read visibly. When a transaction T opens an object and
wishes to be a visible reader, it reads the New Data pointer and
identifies the current Data Object as usual. T then searches through
the list of visible readers for an empty slot, into which it attempts to
CAS a pointer to its own Transaction Descriptor. If it can’t find an
empty slot, it adds the object to its invisible read list (for incremen-
tal validation). Otherwise T double-checks the New Data pointer
to detect races with recently arriving writers, and adds the object to
its visible read list (for post-transaction cleanup). If the New Data
pointer has changed, T aborts itself.

For its part, a writer peruses the visible reader list immediately
after acquiring the object, aborting each transaction it finds. This
implicitly gives writers precedence over readers. (The writer could
peruse the list before acquiring the object as well, invoking con-

5 2006/6/1

tention management with respect to each visible reader. In the in-
terest of minimizing overhead we do not currently perform this
additional traversal.) Because readers double-check the New Data
pointer after adding themselves to the reader list, and writers pe-
ruse the reader list after changing the New Data pointer, there is no
chance that a visible reader will escape a writer’s notice.

After finishing a transaction, a thread t uninstalls itself from
each object in its visible read list. If a writer w peruses the reader
list before t completes this cleanup, w may abort a transaction be-
ing executed by t at some arbitrary subsequent time. However, be-
cause t removes itself from the list before starting another transac-
tion, the maximum possible number of spurious aborts is bounded
by the number of transactions in the system. In practice we can
expect such aborts to be extremely rare.

3.3 Dynamic Storage Management
While RSTM requires no dynamic memory allocation for Object
Headers, Transaction Descriptors, or (in the common case) private
read and write lists, it does require it for Data Objects. As noted
in Section 3.1, a writer that has completed its transaction and
cleaned up the headers of acquired objects knows that the old (if
committed) or new (if aborted) versions of the data will never be
needed again. Transactions still in progress, however, may still
access those versions for an indefinite time, if they have not yet
noticed the writer’s status.

In STM systems for Java, C#, and Haskell, one simply counts
on the garbage collector to eventually reclaim Data Objects that are
no longer accessible. We need something comparable in C++. In
principle one could create a tracing collector for Data Objects, but
there is a simpler solution: we mark superseded objects as “retired”
but we delay reclamation of the space until we can be sure that it is
no longer in use by any extant transaction.

Each thread in RSTM maintains a set of free lists of blocks of
several common sizes, from which it allocates objects as needed.
Threads also maintain a “limbo” list consisting of retired objects.
During post-transaction cleanup, a writer adds each deallocated
object to the limbo list of the thread that initially created it (the
Owner field of the Data Object suffices to identify the creator). To
know when retired objects can safely be reclaimed, we maintain a
global timestamp array that indicates, for every thread, the serial
number of the current transaction (or zero if the thread is not
in a transaction). Periodically each thread captures a snapshot of
the timestamp array, associates it with its limbo list, and starts
a new list. It then inspects any lists it captured in the past, and
reclaims the objects in any lists that date from a previous “epoch”—
i.e., those whose associated snapshot is dominated by the current
timestamp. Similar storage managers have been designed by Fraser
for OSTM [4, Section 5.2.3] and by Hudson et al. for McRT [17].

As described in more detail in Section 3.4 below, the RSTM
API includes a clone() method that the user can override, if de-
sired, to create new copies of Data Objects in some application-
specific way (the default implementation simply copies bits, and
must be overridden for objects with internal pointers or noncontigu-
ous space). The runtime also keeps transaction-local lists of created
and deleted objects. On commit we move “deleted” objects to the
appropriate limbo list, making them available for eventual reclama-
tion. On abort, we reclaim (immediately) all newly created objects
(they’re guaranteed not to be visible yet to any other transaction),
and forget the list of objects to be deleted. This defers allocation
and reclamation to the end of a transaction, and preserves isolation.

3.4 C++ API
RSTM currently works only for programs based on pthreads.
Any shared object must be of class Shared<T>, where T is a type
descended from Object<T>. Both Object<T> and Shared<T>

live in namespace stm. A pthread must call stm::init() before
executing its first transaction.

Outside a transaction, the only safe reference to a sharable ob-
ject is a Shared<T>*. Such a reference is opaque: no T opera-
tions can be performed on a variable of type Shared<T>. Within
a transaction, however, a transaction can use the open_RO() and
open_RW() methods of Shared<T> to obtain pointers of type
const T* and T*, respectively. These can safely be used only
within the transaction; it is incorrect for a program to use a pointer
to a T object or to one of its fields from non-transactional code.

Transactions are bracketed by BEGIN_TRANSACTION. . . END_

TRANSACTION macros. These initialize and finalize the trans-
action’s metadata. They also establish a handler for the stm::

aborted exception, which is thrown by RSTM in the event of fail-
ure of an open-time validation or commit-time CAS. We currently
use a subsumption model for transaction nesting.

Changes made by a transaction using a T* obtained from
open_RW() will become visible if and only if the transaction com-
mits. Moreover if the transaction commits, values read through a
const T* or T* pointer obtained from open_RO() or open_RW()
are guaranteed to have been valid as of the time of the commit.
Changes made to any other objects will become visible to other
threads as soon as they are written back to memory, just as they
would in a nontransactional program; transactional semantics ap-
ply only to Shared<T> objects. Nontransactional objects avoid
the cost of bookkeeping for variables initialized within a trans-
action and ignored outside. They also allow a program to “leak”
information out of transactions when desired, e.g. for debugging or
profiling purposes. It is the programmer’s responsibility to ensure
that such leaks do not compromise program correctness.

In a similar vein, an early release operation [13] allows a trans-
action to “forget” an object it has read using open_RO(), thereby
avoiding conflict with any concurrent writer and (in the case of
invisible reads) reducing the overhead of incremental validation
when opening additional objects. Because it disables automatic
consistency checking, early release should be used only when the
programmer is sure that it will not compromise correctness.

Shared<T> objects define the granularity of concurrency in a
transactional program. With eager conflict detection, transactions
accessing sets of objects A and B can proceed in parallel so long
as A ∩ B is empty or consists only of objects opened in read-only
mode. Conflicts between transactions are resolved by a contention
manager. The results in Section 4 use our “Polka” contention man-
ager [28].

Storage Management. Class Shared<T> provides two con-
structors: Shared<T>() creates a new T object and initializes it
using the default (zero-argument) constructor. Shared<T>(T*)

puts a transaction-safe opaque wrapper around a pre-existing T,
which the programmer may have created using an arbitrary con-
structor. Later, Shared<T>::operator delete will reclaim the
wrapped T object; user code should never delete this object directly.

Class Object<T>, from which T must be derived, overloads
operator new and operator delete to use the memory man-
agement system described in Section 3.3. If a T constructor needs
to allocate additional space, it must use the C++ placement new
in conjunction with special malloc and free routines, avail-
able in namespace stm_gc. For convenience in using the Stan-
dard Template Library (STL), these are readily encapsulated in an
allocator object.

As described in Section 3.3, RSTM delays updates until commit
time by performing them on a “clone” of a to-be-written object.
By default, the system creates these clones via bit-wise copy. The
user can alter this behavior by overriding Object<T>::clone().
If any action needs to be performed when a clone is discarded,

6 2006/6/1

void intset::insert(int val) {
BEGIN_TRANSACTION;

const node* previous = head->open_RO();
// points to sentinel node

const node* current = previous->next->open_RO();
// points to first real node

while (current != NULL) {
if (current->val >= val) break;
previous = current;
current = current->next->open_RO();

}
if (!current || current->val > val) {

node* n = new node(val, current->shared());
// uses Object<T>::operator new

previous->open_RW()->next = new Shared<node>(n);
}

END_TRANSACTION;
}

Figure 4. Insertion in a sorted linked list using RSTM.

the user should also override Object<T>::deactivate(). The
default behavior is a no-op.

Calls to stm_gc::malloc, stm_gc::free, Object<T>::

operator new, Shared<T>::operator new, and Shared<T>

::operator delete become permanent only on commit. The
first two calls (together with placement new) allow the program-
mer to safely allocate and deallocate memory inside transactions.
If abort-time cleanup is required for some other reason, RSTM pro-
vides an ON_RETRY macro that can be used at the outermost level
of a transaction:

BEGIN_TRANSACTION;
// transaction code goes here
ON_RETRY {

// cleanup code goes here
}

END_TRANSACTION;

An Example. Figure 4 contains code for a simple operation on
a concurrent linked list. It assumes a singly-linked node class,
for which the default clone() and deactivate() methods of
Object<node> suffice.

Because node::next must be of type Shared<node>* rather
than node*, but we typically manipulate objects within a trans-
action using pointers obtained from open_RO() and open_RW(),
Object<T> provides a shared() method that returns a pointer to
the Shared<T> with which this is associated.

Our code traverses the list, opening objects in read-only mode,
until it finds the proper place to insert. It then re-opens the object
whose next pointer it needs to modify in read-write mode. For
convenience, Object<T> provides an open_RW() method that re-
turns this->shared()->open_RW(). The list traversal code de-
pends on the fact that open_RO() and open_RW() return NULL

when invoked on a Shared<T> that is already NULL.
A clever programmer might observe that in this particular ap-

plication there is no reason to insist that nodes near the beginning
of the list remain unchanged while we insert a node near the end of
the list. It is possible to prove in this particular application that our
code would still be linearizable if we were to release these early
nodes as we move past them [13]. Though we do not use it in Fig-
ure 4, Object<T> provides a release() method that constitutes a
promise on the part of the programmer that the program will still be
correct if some other transaction modifies this before the current
transaction completes. Calls to release() constitute an unsafe op-
timization that must be used with care, but can provide significant
performance benefits in certain cases.

4. Performance Results
In this section we compare the performance of RSTM to coarse-
grain locking (in C++) and to Java and C++ versions of our pre-
vious ASTM system on a series of microbenchmarks. Our results
show that RSTM outperforms Java ASTM in all tested microbench-
marks. Given our previous results [21], this suggests that it would
also outperform both DSTM and OSTM. At the same time, coarse-
grain locks remain significantly faster than RSTM at low levels
of contention. Within the RSTM results, we evaluate tradeoffs be-
tween visible and invisible readers, and between eager and lazy
acquire. We also show that an RSTM-based linked list implemen-
tation that uses early release outperforms a fine-grain lock based
implementation even with low contention.

Evaluation Framework. Our experiments were conducted on a
16-processor SunFire 6800, a cache-coherent multiprocessor with
1.2GHz UltraSPARC III processors. RSTM and C++ ASTM were
compiled using GCC v3.4.4 at the −O3 optimization level. The
Java ASTM was tested using the Java 5 HotSpot VM. Experiments
with sequential and coarse-grain locking applications show similar
performance for the ASTM implementations: any penalty Java
pays for run-time semantic checks, virtual method dispatch, etc., is
overcome by aggressive just-in-time optimization (e.g., inlining of
functions from separate modules). We measured throughput over
a period of 10 seconds for each benchmark, varying the number
of worker threads from 1 to 28. Results were averaged over a set
of 3 test runs. In all experiments we used our Polka contention
manager for ASTM and RSTM [28]. We tested RSTM with each
combination of eager/lazy acquire and visible/invisible reads.

Benchmarks. Our microbenchmarks include three variants of an
integer set (a sorted linked list, a hash table with 256 buckets,
and a red-black tree), an adjacency list-based undirected graph,
and a web cache simulation using least-frequently-used page re-
placement (LFUCache). In the integer set benchmarks every active
thread performs a 1:1:1 mix of insert, delete, and lookup opera-
tions. The graph benchmark performs a 1:1 mix of vertex insert
and remove operations.

In the LinkedList benchmark, transactions traverse a sorted list
to locate an insertion/deletion point, opening list nodes in read-
only mode, and early releasing them after proceeding down the
list. Once found, the target node is reopened for read-write access.
The values in the linked list nodes are limited to the range 0..255.
The HashTable benchmark consists of 256 buckets with overflow
chains. The values range from 0 to 255. Our tests perform roughly
equal numbers of insert and delete operations, so the table is about
50% full most of the time. In the red-black tree (RBTree) a transac-
tion first searches down the tree, opening nodes in read-only mode.
After the target node is located the transaction opens it in read-write
mode and goes back up the tree opening nodes that are relevant to
the height balancing process (also in read-write mode). Our RBTree
workload uses node values in the range 0 . . 65535.

In the random graph (RandomGraph) benchmark, each newly
inserted vertex initially receives up to 4 randomly selected neigh-
bors. Vertex neighbor sets change over time as existing nodes are
deleted and new nodes join the graph. The graph is implemented
as a sorted adjacency list. A transaction looks up the target node to
modify (opening intermediate nodes in read-only mode) and opens
it in read-write mode. Subsequently, the transaction looks up each
affected neighbor of the target node, and then modifies that neigh-
bor’s neighbor list to insert/delete the target node in that list. Trans-
actions in RandomGraph are quite complex. They tend to overlap
heavily with one another, and different transactions may open the
same nodes in opposite order.

LFUCache [27] uses a large (2048-entry) array-based index and
a smaller (255-entry) priority queue to track the most frequently

7 2006/6/1

accessed pages in a simulated web cache. When re-heapifying the
queue, we always swap a value-one node with any value-one child;
this induces hysteresis and gives a page a chance to accumulate
cache hits. Pages to be accessed are randomly chosen from a Zipf
distribution with exponent 2. So, for page i, the cumulative proba-
bility of a transaction accessing that page is pc(i) ∝

∑
0<j≤i

j−2.

4.1 Speedup
Speedup graphs appear in Figures 5 through 9. The y axis in each
Figure plots transactions per second on a log scale.

Comparison with ASTM. In order to provide a fair evaluation of
RSTM against ASTM, we present results for two different ASTM
runtimes. The first, Java ASTM, is our original system; the second
reimplements it in C++. The C++ ASTM and RSTM implemen-
tations use the same allocator, bookkeeping data structures, con-
tention managers, and benchmark code; they differ only in meta-
data organization. Consequently, any performance difference is a
direct consequence of metadata design tradeoffs.

RSTM consistently outperforms Java ASTM. We attribute this
performance to reduced cache misses due to improved metadata
layout; lower memory management overhead due to static trans-
action descriptors, merged Locator and Data Object structures, and
efficient epoch-based collection of Data Objects; and more efficient
implementation of private read and write sets. ASTM uses a Java
HashMap to store these sets, whereas RSTM places the first 64 en-
tries in preallocated space, and allocates a single dynamic block
for every additional 64 entries. The HashMap makes lookups fast,
but RSTM bundles lookup into the validation traversal, hiding its
cost in the invisible reader case. Lookups become expensive only
when the same set of objects is repeatedly accessed by a transaction
in read-only mode. Overall, RSTM has significantly less memory
management overhead than ASTM.

When we consider the C++ ASTM, we see that both language
choice and metadata layout are important. In RandomGraph, C++
ASTM gives an order of magnitude improvement over Java, though
it still fares much worse than RSTM. HashTable, RBTree, and
LFUCache are less dramatic, with C++ ASTM offering only a
small constant improvement over Java. We attribute the unexpect-
edly close performance of Java and C++ ASTM primarily to the
benefit that HotSpot compilation and dynamic inlining offers, and
suspect that RandomGraph’s poor performance in Java ASTM is
due to the cost of general-purpose garbage collection for large,
highly connected data structures, as opposed to our lightweight
reclamation scheme in C++ ASTM.

Surprisingly, C++ ASTM slightly outperforms RSTM in the
LinkedList benchmark. This difference is due to a minor difference
in how the two systems reuse their descriptor objects. In C++
ASTM, a transaction does not clean up the objects it acquires
on commit, while in RSTM it does. Since it is highly likely that
transactions will overlap, the RSTM cleaning step will likely be
redundant, but will cause cache misses in all transactions when
they next validate. This manifests as a small constant overhead in
RSTM.

Coarse-Grain Locks and Scalability. In all five benchmarks,
coarse-grain locking (CGL) is significantly faster than RSTM at
low levels of contention. The performance gap ranges from 2X (in
the case of HashTable, Figure 6), to 20X (in case of RandomGraph,
Figure 8). Generally, the size of the gap is proportional to the length
of the transaction: validation overhead (for invisible reads and for
lazy acquire) and contention due to bookkeeping (for visible reads)
increase with the length of the transaction. We are currently explor-
ing several heuristic optimizations (such as the conflicts counter
idea of Lev and Moir [18]) to reduce these overheads. We are also
exploring both hardware and compiler assists.

 10000

 100000

 1e+06

 1e+07

 0 5 10 15 20 25 30

T
ra

n
s
a
c
ti
o
n
s
/s

e
c
o
n
d

Threads

Java ASTM
Vis/Eager

Invis/Eager
Invis/Lazy

Vis/Lazy
Coarse-Grained Locks

Figure 5. RBTree. Note the log scale on the y axis in all perfor-
mance graphs.

 100000

 1e+06

 1e+07

 0 5 10 15 20 25 30

T
ra

n
s
a
c
ti
o
n
s
/s

e
c
o
n
d

Threads

Figure 6. HashTable.

With increasing numbers of threads, RSTM quickly overtakes
CGL in benchmarks that permit concurrency. The crossover oc-
curs with as few as 3 concurrent threads in HashTable. For RB-
Tree, where transactions are larger, RSTM incurs significant book-
keeping and validation costs, and the crossover moves out to 7–
14 threads, depending on protocol variant. In LinkedList the faster
RSTM variants match CGL at 14 threads; the slower ones can-
not. In the LFUCache and RandomGraph benchmarks, neither of
which admit any real concurrency among transactions, CGL is al-
ways faster than transactional memory.

RSTM shows continued speedup out to the full size of the
machine (16 processors) in RBTree, HashTable and LinkedList.
LFUCache and RandomGraph, by contrast, have transactions that
permit essentially no concurrency. They constitute something of
a “stress test”: for applications such as these, CGL offers all the
concurrency there is.

Comparison with Fine-Grain Locks. To assess the benefit of
early release, we compare our LinkedList benchmark to a “hand-
over-hand” fine-grain locking (FGL) implementation in which each
list node has a private lock that a thread must acquire in order to
access the node, and in which threads release previously-acquired
locks as they advance through the list. Figure 7 includes this ad-
ditional curve. The single-processor performance of FGL is sig-

8 2006/6/1

 10000

 100000

 1e+06

 1e+07

 0 5 10 15 20 25 30

T
ra

n
s
a
c
ti
o
n
s
/s

e
c
o
n
d

Threads

Java ASTM
Vis/Eager

Invis/Eager
Invis/Lazy

Vis/Lazy
Coarse-Grained Locks

Fine-Grained Locks

Figure 7. LinkedList with early release.

nificantly better than that of RSTM. With increasing concurrency,
however, the versions of RSTM with invisible reads catch up to and
surpass FGL.

Throughput for FGL drops dramatically when the thread count
exceeds the number of processors in the machine. At any given
time, several threads hold a lock and the likelihood of lock holder
preemption is high; this leads directly to convoying. A thread that
waits behind a preempted peer has a high probability of waiting
behind another preempted peer before it reaches the end of the list.

The visible read RSTMs start out performing better than the
invisible read versions on a single thread, but their relative per-
formance degrades as concurrency increases. Note that both visi-
ble read transactions and the FGL implementation must write to
each list object. This introduces cache contention-induced over-
head among concurrent transactions. Invisible read-based transac-
tions scale better because they avoid this overhead.

Conflict Detection Variants. Our work on ASTM [21] contained
a preliminary analysis of eager and lazy acquire strategies. We con-
tinue that analysis here. In particular, we identify a new kind of
workload, exemplified by RandomGraph (Figure 8), in which lazy
acquire outperforms eager acquire. The CGL version of Random-
Graph outperforms RSTM by a large margin; we attribute the rel-
atively poor performance of RSTM to high validation and book-
keeping costs. ASTM performs worst due to its additional memory
management overheads.

In RBTree, LFUCache, and the two LinkedList variants, visi-
ble readers incur a noticeable penalty in moving from one to two
threads. The same phenomenon occurs with fine-grain locks in
LinkedList with early release. We attribute this to cache invalida-
tions caused by updates to visible reader lists (or locks). The ef-
fect does not appear (at least not as clearly) in RandomGraph and
HashTable, because they lack a single location (tree root, list head)
accessed by all transactions. Visible readers remain slower than in-
visible readers at all thread counts in RBTree and LinkedList with
early release. In HashTable they remain slightly slower out to the
size of the machine, at which point the curves merge with those
of invisible readers. Eager acquire enjoys a modest advantage over
lazy acquire in these benchmarks (remember the log scale axis); it
avoids performing useless work in doomed transactions.

For a single-thread run of RandomGraph, the visible read ver-
sions of RSTM slightly outperform the invisible read versions pri-
marily due to the cost of validating a large number of invisibly read
objects. With increasing numbers of threads, lazy acquire versions
of RSTM (for both visible and invisible reads) outperform their

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30

T
ra

n
s
a
c
ti
o
n
s
/s

e
c
o
n
d

Threads

Figure 8. RandomGraph.

 100000

 1e+06

 1e+07

 0 5 10 15 20 25 30

T
ra

n
s
a
c
ti
o
n
s
/s

e
c
o
n
d

Threads

Figure 9. LFUCache.

eager counterparts. The eager versions virtually livelock: The win-
dow of contention in eager acquire versions is significantly larger
than in lazy acquire versions. Consequently, transactions are ex-
posed to extensive interference and expend considerable energy
in contention management; only a few can make progress. With
lazy acquire, the smaller window of contention (from deferred ob-
ject acquisition) allows a larger proportion of transactions to make
progress. Note that we cannot achieve scalability in RandomGraph:
All transactions modify several nodes scattered around in the graph;
they simultaneously access a large number of nodes in read-only
mode. As a result, there tends to be significant overlap between the
read and write sets of any given pair of transactions, and no oppor-
tunity for concurrency.

The poor performance in RandomGraph of RSTM with eager
acquire (and likewise of ASTM) is a partial exception to the con-
clusions of our previous work [28], in which the Polka contention
manager was found to be robust across a wide range of benchmarks.
This is because Polka assumes that writes are more important than
reads, and writers can freely clobber readers without waiting for the
readers to complete. The assumption works effectively for transac-
tions that work in read-only followed by write-only phases, because
the transaction in its write-only phase is about to complete when it
aborts a competing reader. However, transactions in RandomGraph
intersperse multiple writes within a large series of reads. Thus, a

9 2006/6/1

transaction performing a write is likely to do many reads thereafter
and is vulnerable to abortion by another transaction’s write.

Transactions in LFUCache (Figure 9) are non-trivial but short.
Due to the Zipf distribution, most transactions tend to write to the
same small set of nodes. This basically serializes all transactions.
Lazy variants of RSTM outperform ASTM (as do eager variants
with fewer than 15 threads), but coarse-grain locking continues
to outperform RSTM. In related experiments (not reported in this
paper) we observed that the eager RSTMs were more sensitive to
the exponential backoff parameters in Polka than the lazy RSTMs,
especially in write-dominated workloads such as LFUCache. With
careful tuning, we were able to make the eager RSTMs perform
almost as well as the lazy RSTMs up to a certain number of
threads; after this point, the eager RSTMs’ throughput dropped
off. This reinforces the notion that transaction implementations
that use eager acquire are generally more sensitive to contention
management than those that use lazy acquire.

Summarizing, we find that for the microbenchmarks tested, and
with our current contention managers (exemplified by Polka), invis-
ible readers outperform visible readers in most cases. Noteworthy
exceptions occur in the single-threaded case, where visible readers
avoid the cost of validation without incurring cache misses due to
contention with peer threads; and in RandomGraph, where a write
often forces several other transactions to abort, each of which has
many objects open in read-only mode. Eager acquire enjoys a mod-
est advantage over lazy acquire in scalable benchmarks, but lazy ac-
quire has a major advantage in RandomGraph and (at high thread
counts) in LFUCache. By delaying the detection of conflicts it dra-
matically increases the odds that some transaction will succeed.

None of our RSTM contention managers currently takes advan-
tage of the opportunity to arbitrate conflicts between a writer and
pre-existing visible readers. Exploiting this opportunity is a topic
of future work. It is possible that better policies may shift the per-
formance balance between visible and invisible readers.

5. Conclusions
In this paper we presented RSTM, a new, low-overhead software
transactional memory for C++. In comparison to previous non-
blocking STM systems, RSTM:

1. uses static metadata whenever possible, significantly reducing
the pressure on memory management. The only exception is
private read and write lists for very large transactions.

2. employs a novel metadata structure in which headers point
directly to objects that are stable (thereby eliminating the cache
misses due to extra indirection) while still providing constant-
time access to objects that are being modified.

3. takes a novel conservative approach to visible reader lists, re-
ducing the cost of insertions and removals.

4. provides a variety of policies for conflict detection, allowing the
system to be customized to a given workload.

Like OSTM, RSTM employs a lightweight, epoch based garbage
collection mechanism for dynamically allocated structures. Like
DSTM, it employs modular, out-of-band contention management.
Experimental results show that RSTM is significantly faster than
our Java-based ASTM system, which was shown in previous work
to match the faster of OSTM and DSTM across a variety of bench-
marks.

Our experimental results highlight the tradeoffs among conflict
detection mechanisms, notably visible vs. invisible reads, and eager
vs. lazy acquire. Despite the overhead of incremental validation,
invisible reads appear to be faster in most cases. The exceptions
are large uncontended transactions (in which visible reads induce
no extra cache contention), and large contended transactions that

spend significant time reading before performing writes that con-
flict with each others’ reads. For these latter transactions, lazy ac-
quire is even more important: by delaying the resolution of conflicts
among a set of complex transactions, it dramatically increases the
odds of one of them actually succeeding. In smaller transactions
the impact is significantly less pronounced: eager acquire some-
times enjoys a modest performance advantage; much of the time it
is tied with lazy acquire.

The lack of a clear-cut policy choice suggests that future work is
warranted in conflict detection policy. We plan to develop adaptive
strategies that base the choice of policy on the characteristics of the
workload. We also plan to develop contention managers for RSTM
that exploit knowledge of visible readers. The high cost of both
incremental validation and visible-reader-induced cache contention
suggests the need for additional work aimed at reducing these
overheads. We are exploring both alternative software mechanisms
and lightweight hardware support.

Though STM systems still suffer by comparison to coarse-grain
locks in the low-contention case, we believe that RSTM is one step
closer to bridging the performance gap. With additional improve-
ments, likely involving both compiler support and hardware accel-
eration, it seems reasonable to hope that the gap may close com-
pletely. Given the semantic advantages of transactions over locks,
this strongly suggests a future in which transactions become the
dominant synchronization mechanism for multithreaded systems.

Acknowledgments
The ideas in this paper benefited from discussions with Sand-
hya Dwarkadas, Arrvindh Shriraman, and Vinod Sivasankaran. We
would also like to thank the anonymous reviewers for many helpful
suggestions.

References
[1] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and

S. Lie. Unbounded Transactional Memory. In Proc. of the 11th Intl.
Symp. on High Performance Computer Architecture, pages 316–327,
San Francisco, CA, Feb. 2005.

[2] R. Ennals. Software Transactional Memory Should Not Be
Obstruction-Free. Unpublished manuscript, Intel Research Cam-
bridge, 2005. Available as http://www.cambridge.intel-research.net/
˜rennals/notlockfree.pdf.

[3] K. Fraser and T. Harris. Concurrent Programming Without Locks.
Submitted for publication, 2004. Available as research.microsoft.com/
˜tharris/drafts/cpwl-submission.pdf.

[4] K. Fraser. Practical Lock-Freedom. Ph. D. dissertation, UCAM-CL-
TR-579, Computer Laboratory, University of Cambridge, Feb. 2004.

[5] R. Guerraoui, M. Herlihy, and B. Pochon. Polymorphic Contention
Management in SXM. In Proc. of the 19th Intl. Symp. on Distributed
Computing, Cracow, Poland, Sept. 2005.

[6] R. Guerraoui, M. Herlihy, M. Kapalka, and B. Pochon. Robust Con-
tention Management in Software Transactional Memory. In Proc.,
Workshop on Synchronization and Concurrency in Object-Oriented
Languages, San Diego, CA, Oct. 2005. In conjunction with OOPSLA
’05.

[7] R. Guerraoui, M. Herlihy, and B. Pochon. Toward a Theory of Trans-
actional Contention Managers. In Proc. of the 24th ACM Symp. on
Principles of Distributed Computing, Las Vegas, NV, Aug. 2005.

[8] L. Hammond, V. Wong, M. Chen, B. Hertzberg, B. Carlstrom, M.
Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun. Transactional
Memory Coherence and Consistency. In Proc. of the 31st Intl. Symp.
on Computer Architecture, München, Germany, June 2004.

[9] T. Harris and K. Fraser. Language Support for Lightweight Transac-
tions. In OOPSLA 2003 Conf. Proc., Anaheim, CA, Oct. 2003.

10 2006/6/1

[10] T. Harris, S. Marlow, S. P. Jones, and M. Herlihy. Composable
Memory Transactions. In Proc. of the 10th ACM Symp. on Principles
and Practice of Parallel Programming, Chicago, IL, June 2005.

[11] T. Harris and K. Fraser. Revocable Locks for Non-Blocking Program-
ming. In Proc. of the 10th ACM Symp. on Principles and Practice of
Parallel Programming, Chicago, IL, June 2005.

[12] M. Herlihy, V. Luchangco, and M. Moir. Obstruction-Free Synchro-
nization: Double-Ended Queues as an Example. In Proc. of the 23rd
Intl. Conf. on Distributed Computing Systems, Providence, RI, May,
2003.

[13] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software
Transactional Memory for Dynamic-sized Data Structures. In Proc. of
the 22nd ACM Symp. on Principles of Distributed Computing, pages
92–101, Boston, MA, July 2003.

[14] M. P. Herlihy and J. M. Wing. Linearizability: A Correctness Condi-
tion for Concurrent Objects. ACM Trans. on Programming Languages
and Systems, 12(3):463–492, July 1990.

[15] M. Herlihy. Wait-Free Synchronization. ACM Trans. on Programming
Languages and Systems, 13(1):124–149, Jan. 1991.

[16] M. Herlihy and J. E. Moss. Transactional Memory: Architectural
Support for Lock-Free Data Structures. In Proc. of the 20th Intl. Symp.
on Computer Architecture, pages 289–300, San Diego, CA, May 1993.
Expanded version available as CRL 92/07, DEC Cambridge Research
Laboratory, Dec. 1992.

[17] R. L. Hudson, B. Saha, A.-R. Adl-Tabatabai, and B. Hertzberg. McRT-
Malloc — A Scalable Transactional Memory Allocator. In Proc of the
2006 Intl. Symp. on Memory Management, Ottawa, ON, Canada, June
2006.

[18] Y. Lev and M. Moir. Fast Read Sharing Mechanism for Software
Transactional Memory (poster paper). In Proc. of the 23rd ACM Symp.
on Principles of Distributed Computing, St. John’s, NL, Canada, July
2004.

[19] V. J. Marathe and M. L. Scott. A Qualitative Survey of Modern
Software Transactional Memory Systems. TR 839, Dept. of Computer
Science, Univ. of Rochester, June 2004.

[20] V. J. Marathe, W. N. Scherer III, and M. L. Scott. Design Tradeoffs
in Modern Software Transactional Memory Systems. In Proc. of the
7th Workshop on Languages, Compilers, and Run-time Systems for
Scalable Computers, Houston, TX, Oct. 2004.

[21] V. J. Marathe, W. N. Scherer III, and M. L. Scott. Adaptive Software
Transactional Memory. In Proc. of the 19th Intl. Symp. on Distributed
Computing, Cracow, Poland, Sept. 2005.

[22] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N.
Scherer III, and M. L. Scott. Lowering the Overhead of Software
Transactional Memory. TR 893, Dept. of Computer Science, Univ.
of Rochester, Mar. 2006.

[23] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood.
LogTM: Log-based Transactional Memory. In Proc. of the 12th Intl.
Symp. on High Performance Computer Architecture, Austin, TX, Feb.
2006.

[24] R. Rajwar and J. R. Goodman. Transactional Lock-Free Execution of
Lock-Based Programs. In Proc. of the 10th Intl. Conf. on Architectural
Support for Programming Languages and Operating Systems, pages
5–17, San Jose, CA, Oct. 2002.

[25] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing Transactional Mem-
ory. In Proc. of the 32nd Intl. Symp. on Computer Architecture, Madi-
son, WI, June 2005.

[26] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and B.
Hertzberg. McRT-STM: A High Performance Software Transactional
Memory System for a Multi-Core Runtime. In Proc. of the 11th
ACM Symp. on Principles and Practice of Parallel Programming, New
York, NY, Mar. 2006.

[27] W. N. Scherer III and M. L. Scott. Contention Management in Dy-
namic Software Transactional Memory. In Proc. of the ACM PODC
Workshop on Concurrency and Synchronization in Java Programs, St.
John’s, NL, Canada, July 2004.

[28] W. N. Scherer III and M. L. Scott. Advanced Contention Management
for Dynamic Software Transactional Memory. In Proc. of the 24th
ACM Symp. on Principles of Distributed Computing, Las Vegas, NV,
July 2005.

[29] W. N. Scherer III and M. L. Scott. Randomization in STM Contention
Management (poster paper). In Proc. of the 24th ACM Symp. on
Principles of Distributed Computing, Las Vegas, NV, July 2005.

[30] A. Shriraman, V. J. Marathe, S. Dwarkadas, M. L. Scott, D. Eisenstat,
C. Heriot, W. N. Scherer III, and M. F. Spear. Hardware Acceleration
of Software Transactional Memory. In ACM SIGPLAN Workshop
on Languages, Compilers, and Hardware Support for Transactional
Computing, Ottawa, ON, Canada, July 2006. Held in conjunction with
PLDI 2006. Expanded version available as TR 887, Dept. of Computer
Science, Univ. of Rochester, Dec. 2005, revised Mar. 2006.

[31] R. Wahbe, S. Lucco, T. Anderson, and S. Graham. Efficient Software-
Based Fault Isolation. In Proc. of the 14th ACM Symp. on Operating
Systems Principles, Ashvile, NC, Dec. 1993.

[32] A. Welc, S. Jagannathan, and A. L. Hosking. Transactional Monitors
for Concurrent Objects. In Proc. of the 18th European Conf. on
Object-Oriented Programming, pages 519–542, June 2004.

11 2006/6/1

