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Abstract. Understanding the dynamics of evolving social or infrastruc-
ture networks is a challenge in applied areas such as epidemiology, viral
marketing, and urban planning. During the past decade, data has been
collected on such networks but has yet to be analyzed fully. We propose
to use information on the dynamics of the data to find stable parti-
tions of the network into groups. For that purpose, we introduce a time-
dependent, dynamic version of the facility location problem, which in-
cludes a switching cost when a client’s assignment changes from one facil-
ity to another. This might provide a better representation of an evolving
network, emphasizing the abrupt change of relationships between sub-
jects rather than the continuous evolution of the underlying network. We
show for some realistic examples that this model yields better hypotheses
than its counterpart without switching costs, where each snapshot can
be optimized independently. For our model, we present an O(lognT)-
approximation algorithm and a matching hardness result, where n is the
number of clients and T is the number of timesteps. We also give another
algorithm with approximation ratio O(lognT') for a variant model where
the decision to open a facility is made independently at each timestep.

1 Introduction

During the past decade, a massive amount of data has been collected on diverse
networks such as the web (pages and links), social networks (e.g., Facebook,
Twitter, and LinkedIn), and social encounters in hospitals, schools, companies,
and conferences [I821]. These networks evolve over time, and their dynamics
have a considerable impact on their structure and effectiveness [19/14]. Under-
standing the dynamics of evolving networks is a central question in many applied
areas such as epidemiology, vaccination planning, anti-virus design, management
of human resources, and viral marketing. A relevant clustering of the data often
is needed to design informative representations of massive data sets. Algorith-
mic approaches have yielded useful insights on real networks such as the social
interaction networks of zebras [22].
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The dynamics of real-life evolving networks, however, are not yet well under-
stood, partly because it is difficult to observe and analyze such large, sparsely
connected networks over time. Some basic mechanisms such as preferential at-
tachment and copy/paste have been observed, but more specific structures re-
main to be discovered. In this article, we propose a new formulation of the facility
location problem adapted to these evolving networks. We show that, in many
realistic situations, solutions that are stable over time match the ground truth
more closely than those obtained by independent optimization with respect to
each snapshot of the network.

The problem. We focus on a generalized facility location problem where clients
are moving in some metric space over time. We look for a set of open facilities
(also called centers) and a dynamic many-to-one assignment of clients to open
facilities that minimizes the sum of three costs, of which the first two are inherited
from the classical facility location problem. The distance cost is the sum over
each (client,timestep) pair of the distance from the client to its assigned facility at
that timestep. This cost tends to ensure that assigned facilities are representative
with respect to position. The opening cost is linear in the number of facilities.
This cost tends to ensure that only the most meaningful facilities are open. The
new cost, switching, is linear in the number of (client,timestep) pairs where the
client is assigned to a different facility at the next timestep. This cost tends to
ensure that clients switch facilities only in response to significant and lasting
changes in position. We argue that, in many realistic situations, the switching
cost makes solutions close to the ground truth relatively more attractive (see

Section .

Related work. The facility location problem has been studied extensively in
the offline, online, and incremental settings [I2]. The offline setting was a
case study accompanying the development of approximation techniques: primal-
dual and dual fitting methods and local search, for example. A series of pa-
pers [20/T6T3I2/513IT5] obtained almost matching upper and lower bounds
on the polynomially achievable approximation ratio: ©(logn) in general and
[1.463,1.488] in the metric case, where the specified distances satisfy the trian-
gle inequality.

The online setting, where clients arrive over time and the algorithm gradu-
ally opens more and more facilities to serve them, was addressed first by [17],
which obtained the asymptotically tight bound ©(logn/loglogn) on the com-
petitive ratio of the best online algorithm. Subsequent work considered the spe-
cial case where the clients are drawn from some distribution [I] and other spe-
cial cases [I1]. Since many clustering applications benefit from the flexibility to
change the solution over time, incremental settings also have been studied. Such
variants may allow better (i.e., constant) competitive ratios, e.g., the metric case
with streaming constraints [I0] and the Euclidean metric setting where facilities
may be moved as new clients arrive [§]. We also mention the related clustering
problem in which clusters may be merged but not split [4].



Our setting differs from previous dynamic settings because the distances
between clients and facilities may vary over time and because it is desirable to
achieve a trade-off between the stability of the solution — the assignment should
be modified slowly — and its adaptability — the assignment should be modified
if the distances change significantly. Given the existence of experiments such
as [21], we assume access to the whole evolution of the network ahead of time.
We show that constructing an independent optimal solution for each snapshot
of the network yields results that, in a large variety of realistic situations, are
not only unstable (and thus arbitrarily bad according to our objective) but also
undesirable with respect to network dynamics analysis.

As far as we know, settings where the distances between locations vary over
time are still largely unexplored.

Our results. After defining the problem formally in Section [2.I] and giving ex-
amples showing the benefits that one can expect from solving this problem in
the context of metrics evolving over time, we give in Section an O(lognT)-
approximation algorithm for this problem, where n is the number of clients and
T is the number of timesteps.

Theorem 1 (Fixed opening cost) For the dynamic facility location problem
with fized opening cost, there exists a polynomial-time randomized algorithm that,
on all inputs, with probability at least 1/4, outputs a solution satisfying

cost < 8log(2nT) - LP < 8log(2nT') - OPT,

where OPT is the cost of an optimal solution and LP is the value of LP ,
defined at the end of Section[2-1]

Through repetition, running the algorithm ¢ times and taking the best of the ¢
solutions constructed, the probability 1/4 can be improved to 1 — (3/4)". The
constant 8 can be improved as well.

We show in Section [2.4] that this approximation ratio is asymptotically opti-
mal, even for a very special case.

Theorem 2 (Hardness for fixed opening cost) Unless P = NP, for the
dynamic facility location problem with fized opening cost, there is no o(logT)-
approximation.

The lower bound holds even for the metric case with one client and two loca-
tions. This new problem differs significantly from the classic facility location
problem, which admits no o(logn)-approximation for nonmetric distances but
can be 1.488-approximated when the distances satisfy the triangle inequality [15].
In Section [3] we show how to extend our approximation algorithm to the setting
where facilities can be opened and closed at each timestep. The opening cost in
this setting is equal to f times the number of (facility,timestep) pairs such that
the facility is open at that timestep.



Theorem 3 (Hourly opening cost) For the dynamic facility location prob-
lem with hourly opening cost, there exists a polynomial-time randomized algo-
rithm that, on all inputs, with probability at least 1/4, outputs a solution satis-
Jying

cost < 8log(2nT) - LP < 8log(2nT) - OPT,

where OPT is the cost of an optimal solution and LP is the value of LP ,
defined at the end of Section[3-1]

Again, through repetition, running the algorithm ¢ times and taking the best of
the ¢ solutions constructed, the probability 1/4 can be improved to 1 — (3/4)*.
The constant 8 can be improved as well. This article concludes with several open
questions and possible extensions of this work.

2 Facility Location in Evolving Metrics

2.1 Definition

We denote by [n] = {1,...,n} the subset of integers from 1 to n inclusive.

Dynamic facility location problem with fixed opening cost. We are given a set F
of m facilities and a set C' of n clients together with a finite sequence of distances
(dt)ee[r) over F' x C, a nonnegative facility opening cost f, and a nonnegative
client switching cost g. The goal is to output a subset A C F' of open facilities
and, for each timestep ¢t € [T], an assignment ¢; : C — A of clients to open
facilities so as to minimize

FAAl+ D0 dld@) i) +g- Y. Hel) # b))

te[T],jeC te[T—1],5€C

namely, the sum of the opening cost (f for each open facility), the distance cost
(the sum over each (client,timestep) pair from the client to its assigned facility
at that timestep), and the switching cost (g for each (client,timestep) pair where
the client is assigned to a different facility at the next timestep).

Ezxamples. The two examples in Figure [1| show how facility location in the dy-
namic setting is quite different from facility location in the static setting and
yields more desirable partitions of the clients. In both examples, a facility can
be opened at every client (so that electing a facility consists of electing a repre-
sentative for every significantly different behavior).

In example [1(a)| we see a classroom with students split into five groups and
a teacher moving from group to group in cyclic order. When the number of
students is large, static facility location isolates the five groups and moves the
teacher from one group to the next between snapshots. Dynamic facility location
isolates every group of students and puts the teacher in a sixth group.

In example|[L(b)l we see two groups of people passing through each other, on
a street for instance. Static facility location outputs first the two groups, then a
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(a) The classroom: one teacher cycling between 5 groups of students.

Optimal Dynamic Facility Location Optimal Static Facility Location

(b) Two groups crossing.

Fig. 1. Dynamic versus static facility location.

single group, then two groups again. Dynamic facility location, however, keeps
the same groups for the whole time period, with the same representatives.

Assuming in the first example that the distances between individuals are very
small and in the second that they are very large, the ratio of the (dynamic) cost
between the dynamic solution and the sequence of static solutions can be made
arbitrarily large, because the switching cost grows for the sequence of static
solutions as £2(7T") and 2(n) respectively.

Fact 4 The (dynamic) cost of a sequence of optimal static facility location solu-
tions for each snapshot can be larger than the cost of an optimal dynamic facility
location solution by a factor 2(T + n).

A linear relaxation. For an integer programming formulation, we define indicator
0-1 variables y;, 2}, 2}; for t € [T] and i € F and j € C. We let y; = 1 if and
=1 if and only if client j is assigned to facility i at

only if facility i is open; z};
timestep t¢; and zfj = 1 if and only if client j is assigned to facility ¢ at timestep ¢



but not at timestep ¢ + 1. The dynamic facility location problem is equivalent
to finding an integer solution to the following linear programming relaxation.

Minimize f - Z yi + Z :rﬁj ~de(i,5)+g- Z zfj
1EF te[T),ieF,jeC te[T — 1],i€F, jeC
subject to (Vte[T],icF, jeC) z}; <y
(Vte[T], jeC) Y al; =1 (1)
ier
; ; t t t+1
(Vte[I'-1),ieF, jeC) zj; >z —
(Vtel[T],icF, j€C) yi,xlj,2;>0

ij
2.2 Facts about Probability

We use the following two facts and some properties of exponential distributions.

Fact 5 Let X > 0 be a random wvariable and B be an event, not necessarily
independent. We have E[X | B] < E[X]/Pr B.

Proof. Let B be the complement of B. We have
E[X | B < E[X | B] + E|X | B|PrB/Pr B = E[X]/Pr B. 0

Fact 6 (Markov’s inequality) Let X > 0 be a random variable. For every
x > 0, we have Pr{X > z} < F[X]/x.

A random variable X is exponentially distributed with rate X if and only if,
for every z > 0, it satisfies Pr{X >z} = =77,

Fact 7 If X is exponentially distributed with rate X\, then, for every ¢ > 0, the
distribution of X/c is exponential with rate c\.

Fact 8 Let (X;)icr be a sequence of independent random variables, where X;
1s exponentially distributed with rate \;. Then min,cp X; is exponentially dis-
tributed with rate ) ;. p Ni, and the argument of the minimum is i with proba-

bility M) e p k-

Proof. Indeed, Pr{min;er X; > a} = [[;cp Pr{X; > 2} = e~ 2ierN®_ As for
the second claim,

o0
Pr{arginilrlek =i} = Pr{(Vk #1i) X >z} - Pr{X, € [z, z + dz|}
€

=0

= /Oo e Z’C#i Ak, )\ie_A’iIdx = >\z/ Z Ak O
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2.3 Approximation Algorithm

In order to determine a solution, we need to (1) decide which facilities to open,
(2) decide when each client switches from one facility to another, and (3) decide
which facility to connect each client to between switches. After computing an
optimal (fractional) solution (z,y, z) to LP (1), Algorithm [1] proceeds as follows.
Decision (1) is made by sampling the facilities according to (y;); approximately
O(lognT) times.As we will show, this ensures that every client selects a sampled
facility with high probability.

Regarding decision (2), since ), zf; = 1, one can view (z};); as the desired
distribution for the facility assigned to client j at timestep ¢. The subroutine Al-
gorithm [2] partitions time, independently for each client j, into intervals during
which the distribution (z};); remains stable enough, i.e., the distributions (xf;);
share a large enough common probability mass during each time interval of the
partition. The common probability mass of the distributions (xfj)z during a time
interval U is defined as the sum over all facilities ¢ of the minimum probability
a?g = mingcy xﬁj of assigning client j to ¢ over U. The rule defining the partition
is that each interval (except the last one) is maximal subject to the constraint
that the common probability mass is at least 1/2. This ensures two key prop-
erties. First, the distributions (mfj)l for t € U are close enough to each other
to be compatible and also, due to the first LP constraint, close enough to (y;);
to match the sampling of the facilities. Second, the distributions are deemed to
have changed too much when the z};s have had a combined decrease of at least
1/2, which implies by the third LP constraint that the corresponding zﬁjs sum
to at least 1/2, covering the cost of switching to another facility.

Decision (3) is made simply by assigning each client to the most likely of its
preferred facilities to be open.

We propose two versions of the algorithm. The first assigns clients to open
facilities via an optimal dynamic program, while the second uses the intuitive
strategy described in Algorithm [2 We analyze the latter, as its approximation
ratio is no worse than that of the former.

Theoremstates that Algorithmoutputs an O(log nT')-approximation with
positive constant probability. In the next section, we will show that this is asymp-
totically optimal (unless P = NP).

Proof (Theorem . Note that Algorithm [2| may produce an assignment that is
not feasible. We bound the expected cost without conditioning on feasibility,
bound the probability of feasibility, and finish by applying Fact [5] and Markov’s
inequality.

Algorithm 1 Fixed opening cost

e Solve the linear program LP to obtain an optimal (fractional) solution (z,y, z).

e Choose the open facilities A randomly as follows. For each facility 7, choose Y; having
exponential distribution with rate 2log(2nT). Let A={i € F:Y; <y}

e With a dynamic program, determine how to assign optimally clients to facilities in A.
Alternatively, for the purposes of analysis, use Algorithm [2]




Algorithm 2 Intuition-driven assignment of clients to facilities
for each client j do o _
e Partition time greedily into ¢; intervals [t;,t; ) where £; and (t})repe,+1] are

defined as follows: tJ = 1, and ti_H is defined inductively as the greatest t € (t], T41]
such that min ml‘J) > 1/2. Let ti_H =T+1.

e ‘th<u<t J
e For each time interval U = [t], t£+1), assign client j to argument of min;e (Y3 /25),

u

where jsg = minyeuv Tjj.

end for

The unconditional expected facility opening cost is

foy (1= e 2vilosln )y < (2log(2nT)) f - Y yi

i€F ieF

by the well known inequality 1+ 2 < e*. The right-hand side is 2log(2nT) times
the corresponding term in the LP objective.

To analyze the unconditional expected distance cost, we define, for each
client j, all of its time intervals U, and all ¢ € U, a fictitious independent
event Bf such that PrB! = 7, aﬁgj € [1/2,1] by the LP and the def-

inition of U E| We use this fictitious event B; to define a random variable
. ) . . 5t

It € F by letting Pr{I} =1i| B!} itx%/zkekaUj and Pr{l} =i| B;} =
(2}; — i‘g)/zkeF(aﬂfﬂ — oﬁgj), where B; is the complement of B%. Note that
PrEE- = Y per(Th; — i“kUJ) since >y cp@f; = 1 by LP (I). The unconditional
distribution of I¥ thus is described by Pr{I} = i} = z};, so the expected dis-
tance from j to I is E[d; (I}, §)] = > ;cp 2!, -di(i, j). Since arg mine p(Y;/27)) is
1 with probability :%ZUj /> ker igj by Fact|8| the actual assignment of Algorithm
is made according to the conditional distribution of I]t- given B;, so by applying
Fact [f] and summing, the total unconditional expected distance cost is at most

2. 3 al-diig),

te[T),ieF,jeC

which is twice the corresponding term in the LP objective.
To bound the switching cost, which is deterministic, we prove that, for each
client j and all of its time intervals U except the last one,

> o> 1)2

teU,ieF

5 More concretely, let Bjt- be an event corresponding to the outcome HEADS of an
independent biased coin flip that results a priori in HEADS with probability >, cF itg
This event represents our ability to sample from the common probability mass of

the distributions (z};); for t € U.



Each client switches only after its non-last intervals. Since each variable 2
appears in exactly one sum, the total switching cost is bounded above by

2g- Z ija

te[T—1],ieF,jeC

which is twice the corresponding term in the LP objective.

The z-variables measure decreases in the corresponding x-variables.
Specifically, for every t; < t3, the LP inequalities telescope to yield
mf; — xfj < Zue[tl,tz) zi5. By letting ¢ be the first time in U = [t1,t3) and
t2 be the argument of the minimum min,ey, ¢,) 5, whose domain is U U {t3},
we sum to obtain the inequality

1/2=1-1/2<1- min _z;; = E (xf;— min ;%) < E 255
— u€lty,ts] ‘ u€[t1,ts] -
iEF i€l u€UieF

where the first inequality is a consequence of defining U maximally.

As the next to last step, we bound the probability that every client is assigned
to an open facility. Recall that, at each timestep ¢, Algorithm [2] assigns each
client j to the argument ¢* of the minimum minieF(Yi/i?%)7 where U >t is the
corresponding interval for j. This facility is open if and only if Y;« < y;«. Since

~U t
L5 < Tij < Yi,

Pr{Yi- <yi-} > Pr{Yi- <7} = Primin(Vi/;) < 1}

The  quantity minep(Y;/ ig) is  exponentially  distributed  with
rate  2log(2nT) - Y., cpdf > log(2nT) since Y, p25 > 1/2, so
Pr{Y;« <y;»} >1—1/(2nT). By a union bound over all clients and timesteps,
the probability of a feasible assignment is at least 1/2.

In conclusion, we observe that the unconditional expected cost is a
2log(2nT)-approximation of the LP objective, and the probability of a feasi-
ble assignment is at least 1/2. By Fact [5 the conditional expected cost given
feasibility is a 4log(2nT')-approximation. By Markov’s inequality, with probabil-
ity at least 1/2-1/2 = 1/4, the output is a feasible 8 log(2nT)-approximation. O

2.4 Hardness of Approximation

Proof (Theorem @) We exhibit an objective-preserving reduction from the set
cover problem. Fix an instance of set cover with T elements and m sets. We
define the following instance of dynamic facility location. There is one timestep
t for each element of the set cover instance, one facility ¢ for each set of the set
cover instance, and a single client. We set ¢ = 0 (i.e., g is small enough with
respect to f and 1/n and 1/T). Assume that the only possible positions for the
client and facilities are two locations a and b at distance co (i.e., large enough)
from each other (note that this metric satisfies the triangle inequality). At every
timestep ¢, the client’s position is location a. For each set i of the set cover



instance, the position of the corresponding facility is location a if set ¢ contains
element ¢ and location b otherwise.

Since the distance between the two locations is infinite, a solution for our in-
stance of dynamic facility location has finite cost if and only if, at every timestep,
some open facility has position a, i.e., the set of open facilities corresponds to
a cover. The cost of such a solution is f times the number of open facilities.
We conclude that the 2(InT)-inapproximability result for set cover with T" ele-
ments [7] implies the same inapproximability result for our problem. a

3 Hourly Opening Cost

3.1 Dynamic Facility Location with Hourly Opening Cost

We now focus on a variant of the problem studied in the previous section, where
each facility may be open or closed independently at each timestep and where
the opening cost f is paid for each (facility,timestep) pair where the facility is
open at that timestep. In other words, the cost of a facility is not its construction
cost but its rental cost.

Dynamic facility location problem with hourly opening cost. We are given a set
F of m facilities and a set C' of n clients together with a finite sequence of
distances (dt):e[r) over F' x C and two nonnegative values f and g. The goal
is to output a sequence of subsets A; C F' of facilities and, for each timestep
t € [T], an assignment ¢ : C' — A, of clients to facilities so as to minimize

YA+ YD dda() i) +g- D, W) # b ()}
]

te[T te[T],jeC te[T—1],j€C

Linear relazation. LP (1)) can easily be adapted to this variant, with new vari-
ables y! replacing y;. The interpretation of y! is that it equals 1 if and only if
facility ¢ is open at timestep t.

Minimize f Y yi+ > alj-d(ii)+g Y,
te[T],icA te[T),ieF,jeC te[T—1],i€eF,jeC
subject to (Vtel[T],icF, jeO) a}; <y
(Vte[l], jeC) Y al;=1 2)
i€F
. . t t t4+1
(Vte[T'—1],ieF, jeO) z; > xj; — ;]
(Vte[T), ieF, jeC) ylal;,zl >0

3.2 Approximation Algorithm

Our algorithm for hourly costs, Algorithm [3] is very similar to Algorithm [1}, for
fixed costs. The key idea is to choose the random variables Y; only once to ensure



Algorithm 3 Hourly opening cost

e Solve the linear program LP to obtain an optimal (fractional) solution (z,y, 2).

e For each timestep ¢, choose the open facilities A; randomly as follows. Once, for
each facility ¢, choose Y; having exponential distribution with rate 2log(2nT). Let
A ={ieF:Y, <y}

e With a dynamic program, determine how optimally to assign clients to facilities in A;.
Alternatively, for the purposes of analysis, use Algorithm [2| (as done in Algorithm .

that the set of open facilities is stable. The statements of correctness, Theorems|I]
and [3| are proved by exactly the same arguments. The only difference is that,
in order for the facility i* = arg min;ecp K/sf:% to be open to client j throughout
its time interval U, we need Y;« < y!. for all t € U. For each choice of j and U,
this family of inequalities is satisfied with probability at least 1 — 1/(2nT), the
same bound as before, since the fact that x% < xfj < yf for all ¢t € U and
all i € F implies as before that Pr{(Vt € U) Y;» < yh} > Pr{V;- < 2} =

Pr{min;cp Yl/ig <1} > 1-1/(2nT). The rest of the proof requires no change.

4 Conclusion and Open Questions

Algorithm [I| applies even if the distances between clients and facilities do not
satisfy the triangle inequality, and it extends directly to nonuniform opening
costs as well as arrival and departure dates for clients. It is striking that in-
stances with distances satisfying the triangle inequality are not easier in the
dynamic setting as opposed to the classic static setting (the approximation ra-
tio O(lognT') of Algorithm [1]is tight in both dynamic cases). Algorithm [3| also
extends directly to the setting of opening costs that are nonuniform in time.
The last section naturally raises the question of whether there exists an w(1)-
hardness result / O(1)-approximation algorithm for the general hourly opening
cost case.

We believe that our dynamic setting should be helpful in designing better
static representations of dynamic graphs (e.g., two dimensional flowcharts of
clients navigating between facilities over time). Another natural extension of
our work is to study other objective functions for the distance cost, such as the
sum of the diameters of the reported clusters over all timesteps (i.e., the sum
of the distance of the farthest client assigned to each facility, see, e.g., [6] for a
static formulation). As it turns out, the optimal dynamic solutions with respect
to this objective tend to exhibit very intriguing behaviors, even in the simplest
case of clients moving along a fixed line [9].
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