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Abstract
We consider variants of the metric k-center problem.
Imagine that you must choose locations for k firehouses
in a city so as to minimize the maximum distance of a
house from the nearest firehouse. An instance is specified
by a graph with arbitrary nonnegative edge lengths, a set
of vertices that can serve as firehouses (i.e., centers) and a
set of vertices that represent houses. For general graphs,
this problem is exactly equivalent to the metric k-center
problem, which is APX-hard. We give a polynomial-time
bicriteria approximation scheme when the input graph is
a planar graph.

We also give polynomial-time bicriteria approxima-
tion schemes for several generalizations: if, instead of
all houses, we wish to cover a specified proportion of
the houses; if the candidate locations for firehouses have
rental costs and we wish to minimize not the number of
firehouses but the sum of their rental costs; and if the
input graph is not planar but is of bounded genus.

1 Introduction

We consider the k-center problem and its variants.
Imagine you must choose locations for firehouses in a
city so that all (or a specified proportion of) houses
are within a five-minute drive of some firehouse; the
goal is to minimize the number of firehouses or the
sum of their acquisition costs. Alternatively, you have
a budget for acquiring firehouse locations and want to
minimize the travel time to the farthest house served.

The metric k-center problem is as follows: given
a metric space (V, d), find a k-element subset M
of points that minimizes maxv∈V d(M, v). Even
for the Euclidean plane and L2 distances, it is
NP-hard to approximate this objective to within
a factor better than 1.822 [10] (within a factor
better than 2 for L1 and L∞). Hochbaum and
Shmoys [12] and Gonzalez [11] gave a polynomial-
time 2-approximation algorithm that works for an ar-
bitrary metric space and showed that no polynomial-
time (2 − ε)-approximation algorithm exists unless
P=NP (even for the metric space arising from dis-
tances in a planar graph with unit-length edges).
There is thus not much room for improvement here.1
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1Feder and Greene [10] improve the running time for the

The r-dominating-set problem is as follows:
given a metric space (V, d) and a distance thresh-
old r, find a minimum-size set M of points such that
every point in V is within distance r of some point
in M . This is a special case of set cover and can
be approximated to within a factor of 1 + ln|V |. In
the Euclidean plane, however, a better approxima-
tion can be achieved. Hochbaum and Maass [13] gave
a polynomial-time approximation scheme for a more
general problem, a special case of which is covering by
disks (where the disk radius is specified in the input).

Metric spaces arising from distances in pla-
nar graphs Since road maps are nearly planar, it is
natural to consider the problems of k-center and r-
dominating set when the metric space arises from dis-
tances in a planar graph with edge lengths (and the
planar graph is included as part of the input). Un-
fortunately, as mentioned above, this restriction does
not help in obtaining a more accurate polynomial-
time approximation algorithm for k-center, and so far
it remains open whether there is such an algorithm
for r-dominating set.

Constant r and constant k However, adding
an additional restriction helps a great deal. A
planar graph of diameter c has treewidth O(c) [4, 5].
This suggests restricting attention to metric spaces
arising from planar graphs with unit-length edges and
restricting r to be a constant. Under this restriction,
Demaine, Fomin, Hajiaghayi, and Thilikos [8] give a
linear-time approximation scheme for r-dominating
set.

The k-center problem involves minimizing the
radius, and the r-dominating set involves minimizing
the number of centers. The (k, r)-center problem is
to find a set of at most k centers such that every
other vertex is within distance r of at least one of
these centers. Demaine, Fomin, Hajiaghayi, and
Thilikos [8] gave an algorithm for the (k, r)-center
problem that, for constant k and constant r, runs in
polynomial time.

Unbounded k and r What can be achieved for
k-center, r-dominating set, and (k, r)-center if k and r
are unbounded and the metric space is that of a given

Euclidean case.



planar graph with arbitrary edge lengths? We give
a bicriteria polynomial-time approximation scheme.
That is, the algorithm approximates both the number
of centers and the radius. In addition, the algorithm
handles graphs of any bounded genus. More precisely,

Theorem 1.1. For every fixed ε > 0, there is
a polynomial-time algorithm such that, for every
bounded-genus input graph with nonnegative edge
lengths, for every input numbers k and r,

• if there is a k-element set M∗ of centers for
which every vertex is within distance r of M∗

• then the algorithm outputs a set M of centers of
size at most (1 + ε)k for which every vertex is
within distance (1 + ε)r of M .

Not all vertices are equally good locations for fire-
houses. Some might not be available to acquire; some
might be disallowed due to neighborhood objections;
some might be more costly than others. We there-
fore consider an assignment of costs to vertices, and
we seek a low-cost set M .

Also, not all locations in a map need to be near
firehouses. As pointed out by Charikar, Khuller,
Mount, and Narasimhan [6] it is unrealistic to re-
quire that every vertex in a graph be served by a fa-
cility. For commercial applications especially it might
be economically sensible to disregard some potential
customers. Charikar et al. cite a Washington Post
article from 2000, in which an executive states that
“there’s a Kmart within six miles of 88 percent of the
U. S. population.”2 We therefore consider an assign-
ment of weights to vertices and seek to maximize the
weight of vertices within a given distance from the
set M .

Our bicriteria approximation scheme can handle
costs and weights without approximating in weight.

Theorem 1.2. For every fixed ε > 0, there is
a polynomial-time algorithm such that, for every
bounded-genus input graph with nonnegative edge
lengths, nonnegative vertex costs, and arbitrary ver-
tex weights, for every input numbers C, r,

• if there is a set M∗ of vertices of cost at most
C such that the vertices within distance r of M∗

have total weight w

• then the algorithm returns a set M of cost at
most (1 + ε)C such that the vertices within
distance (1 + ε)r have total weight at least w.

2If the article were more recent, it would no doubt mention

instead Starbucks or Walmart.

As a corollary, we get an algorithm that can
handle penalties on vertices, to be added to the costs
if these vertices are not within the required distance
of the centers.

Corollary 1.1. For every ε > 0, there is a
polynomial-time algorithm such that, for every
bounded-genus input graph with nonnegative edge
lengths, nonnegative vertex costs, and vertex penal-
ties, for every input number r,

• if there are sets M∗ and U∗ of vertices such that
every vertex not in U∗ is within distance r of M∗

• then the algorithm returns two sets M and U
such that every vertex not in U is within dis-
tance (1 + ε)r of M and

cost(M) + penalty(U)

≤ (1 + ε)cost(M∗) + penalty(U∗).

1.1 Techniques
Metric shifting Baker [4] gave approximation

schemes for several optimization problems in planar
graphs using shifting, a method in which a problem on
the whole graph is reduced to solving the problem on
several graphs with small breadth-first-search depth
and returning the best solution thereby obtained.
(A similar technique was the basis of the scheme
of Hochbaum and Maass [13].) This technique was
directly applied by Demaine et al. [7] to graphs
with unit-length edges and constant radius r. Here
we extend the shifting method to handle arbitrary
lengths and arbitrary radius r. The extension is
obvious; instead of yielding subgraphs with small
breadth-first search depth, it yields subgraphs with
small metric radius.

Clusters bounded by short paths For the
subsequent dynamic program, we break the graph
into clusters such that each cluster’s boundary ver-
tices lie on a small number of shortest paths, based
on applying a lemma of Lipton and Tarjan [15] to
a shortest-path tree. This idea was used by Arora,
Grigni, Karger, Klein, and Woloszyn [2] in an approx-
imation scheme for TSP in planar graphs with edge
lengths, and by Thorup [17] in an approximate dis-
tance oracle for planar graphs and in follow-up work,
e.g., [14], which included the extension to bounded-
genus graphs.

Lipschitz configurations In the dynamic pro-
gram, a configuration assigns numbers to the bound-
ary vertices of a cluster. In order to keep the number
of configurations small, we use only a coarse selection
of integers and need to impose a continuity constraint
on the numbers. This idea was introduced by Arora,



Rao, and Raghavan [3]. It leads to approximation
error in the distances.

1.2 Notation and terminology Although for
historical reasons we have discussed k-center, our al-
gorithms do not take the desired number of centers
as a parameter. Our algorithms clearly can be used
to address the k-center problem.

The reader should be warned that we use k in
this paper as a variable in the dynamic program and
that occurrences of k in the paper do not refer to the
parameter in the k-center problem.

Let G be a graph. We denote the edge set
by E(G) and the vertex set by V (G). If G is an
embedded graph, we denote the face set by F (G).
If G has nonnegative edge lengths and there is a
shortest-path tree with maximum distance L, we say
G has radius L.

For a set S of vertices of a graph G, δG(S) is the
set of boundary edges of S, i.e., the set of edges e such
that e has one endpoint in S and one endpoint not
in S. Such a set is called a cut. For a set S of edges
of G, ∂S is the set of boundary vertices of S, i.e., the
set of vertices v such that v belongs to at least one
edge in S and at least one edge not in S. For a set
S of faces of an embedded graph G, δG(S) is the set
of edges e such that e bounds a face in S and a face
not in S, and ∂GS is the set of vertices of G that lie
on edges of δG(S).

We define the ball-cover problem in graphs as
follows: given a pair (G,W ) where G is a graph with
nonnegative edge lengths andW is a subset of vertices
of G, find a minimum-size set M of vertices such that
every vertex of W is within distance 1 of some vertex
in M . We refer to the vertices in M as centers, and
we refer to the vertices in W as clients.

In this definition, we specify a distance threshold
of 1, but this choice can be made without loss of
generality since the edge lengths can be scaled.

We say that a set of centers covers within distance
d a set of clients if every client is within distance d
of a center. For a graph G with edge lengths, we use
dG(u, v) to denote the u-to-v distance.

2 Metric shifting

We assume for notational convenience that ε−1 is an
integer. In this section, we extend Baker’s shifting
technique to reduce a ball-cover instance (G,W ) to a
collection of ball-cover instances (Gσj ,W

σ
j ) such that

each graph Gσj has radius at most 2ε−1 + 3. These
instances are solved by the subroutine of Step *,
described in greater detail later.

For each value of σ in {0, 1, 2, . . . , ε−1 − 1},
the graphs Gσ0 , G

σ
1 , G

σ
2 , . . . overlap slightly. The

client sets Wσ
0 ,W

σ
1 ,W

σ
2 , . . . partition W and thus

do not overlap. The solutions to the instances
(Gσ0 ,W

σ
0 ), (Gσ1 ,W

σ
1 ), (Gσ2 ,W

σ
2 ), . . . are combined to

form a solution Mσ. The best of the solutions
{Mσ : σ ∈ {0, 1, 2, . . . , ε−1 − 1}} is returned.

The graph Gσj is obtained from G by deleting
vertices whose distance from s is at least some
threshold, and contracting to a single vertex (called
s) all vertices whose distance is less than some lesser
threshold, so it is planar. The edges incident to s in
Gσj all are assigned length 1, so every path in Gσj that
passes through s has length at least 2.

Lemma 2.1. If there exists a set M∗ of at most k
centers covering all clients within distance 1, then the
output M of Algorithm Main is a set of at most
(1 + ε)k centers covering all clients within distance
1 + ε.

Proof. Fix a value of σ in {0, 1, 2, . . . , ε−1 − 1}. Let
Sσj = V σj ∩V σj+1 and let Sσ =

⋃
j S

σ
j . For every σ, the

only vertices common to some pair of Gσ0 , G
σ
1 , G

σ
2 , . . .

belong to Sσ, and every such vertex is common to
exactly two of these graphs. This implies that∑

j

|M∗ ∩ V σj | ≤ |M∗|+ |M∗ ∩ Sσ|.

The sets {Sσ : σ ∈ {0, 1, 2, . . . , ε−1− 1}} are disjoint,
so ∑

σ

|M∗ ∩ Sσ| ≤ |M∗|.

Therefore, there is a value of σ for which |M∗∩Sσ|≤
(1 + ε)|M∗|. Let σ̄ be such a value. Then

(2.1)
∑
j

|M∗ ∩ V σ̄j | ≤ (1 + ε)|M∗|.

By the correctness of Step *, the solution M σ̄
j

obtained for input (Gσ̄j ,W
σ̄
j ) has cardinality at most

|M∗ ∩ V σ̄j |. Combining with 2.1, we obtain |M σ̄| ≤
(1 + ε)|M∗|. �

We have now reduced the problem to instances
(G′,W ′) where G′ has radius at most 2ε−1 + 3. To
implement Step *, we first use the embedding to
find a recursive partition of the graph, then apply
a dynamic-programming algorithm.

3 Recursive partition

In this section, we define a small-depth recursive par-
tition of the faces of a planar embedded triangulated
graph, such that each cluster of faces is bounded by
at most 4 short simple paths (Corollary 3.1, used in
the algorithm presented in section 4.1.)



Algorithm Main

input: graph G with nonnegative edge lengths, subset W of vertices
output: a set of centers M that satisfies Lemma 2.1

Let s be a vertex of G.
Compute a shortest-path tree in G with root s.
For every shift σ ∈ {0, 1, 2, . . . , ε−1 − 1},

For every j ≥ 0,
Let intervals I = [2jε−1 − 2σ, 2(j + 1)ε−1 − 2σ)

and I+ = [2jε−1 − 1− 2σ, 2(j + 1)ε−1 + 1− 2σ).
Let Wσ

j = {v ∈W : dG(s, v) ∈ I}.
Let V σj = {v ∈ V (G) : dG(s, v) ∈ I+}.
Let Eσj be the restriction of E(G) to Vj × Vj .
Let Gσj denote the graph with vertices {s} ∪ V σj and

edges Eσj ∪ {sv : v ∈ Vj , v’s parent not in Vj},
where the extra edges sv have length 1.

For input (Gσj ,W
σ
j ), call Algorithm DP to find a set Mσ

j of centers
covering all clients in Wσ

j within distance 1 + ε in Gσj , such that the number of centers
is at most the minimum required to cover Wσ

j within distance 1.
Mσ ←

⋃
jM

σ
j .

M ← best of Mσ over all values of σ.
Output M .

We adapt the notion of carving [16]. A recursive
partition of a set S is an abstract binary tree T in
which each node x is labeled with a subset S(x) of S,
called the cluster associated with x, such that

• the root x is labeled with S, and

• for each node x of T with children x1 and x2,
S(x) = S(x1) ∪ S(x2) and S(x1) ∩ S(x2) = ∅,
and

• each leaf x is labeled with a singleton: |S(x)| =
1.

The depth of the recursive partition is the depth of
the tree.

Lemma 3.1. Let T be a tree of degree at most 3.
There is a recursive partition of V (T ) with depth
O(log|V (T )|) such that, for each cluster C of vertices,
the subforest of T induced by C is a tree, and the set
δT (C) of boundary edges of C in T has cardinality at
most 4.

Proof. We proceed top-down and give an algorithm
to decompose each cluster C into two child clusters
C1 and C2. The abstract tree T can be inferred from
the recursive partition. The algorithm chooses an
edge e of T [C], the subtree of T induced by C. Then

T [C]−e consists of two trees, T1 and T2, and we take
Cj = V (Tj).

There are two cases. If |δT (C)| ≤ 3, we choose e
to be a balanced separator of T [C], i.e., an edge for
which |Cj | is between 1

3 |C| and 2
3 |C|. If |δT (C)| = 4,

we choose e so as to separate the endpoints of two of
the edges in δT (C) from the endpoints of the other
two, so that |δT (Cj)| ≤ 3 for j = 1 and j = 2.

Since, for each leaf x of the resulting recursive
partition, Case 1 applies at least to every other an-
cestor of x, it follows that the depth is O(log|V (T )|).
�

Corollary 3.1. Let G be an n-face planar embed-
ded triangulated graph with edge lengths. Then there
is a recursive partition of the faces F (G) of G that has
depth O(log n) and such that each cluster is bounded
by vertices lying on at most 8 shortest paths.

Proof. Let T be a shortest-path tree of G from some
arbitrary starting vertex. Let G∗ be the planar dual
of G. Let T ∗ be the set of edges e of G∗ such that the
edge in G corresponding to e is not in T . A classical
result [1] is that the edges of T ∗ form a spanning tree
of G∗. Apply Lemma 3.1 to T ∗ to get a recursive
partition of the set of vertices of T ∗, i.e., the set of
faces of G.

Let C be a cluster in this partition. Then C con-



sists of the vertices of a subtree of T ∗ bounded by
at most 4 edges. Let e1, . . . , e` be those edges. Each
edge ej belongs to T ∗ and therefore does not belong
to T . It follows from well known properties of planar
graph duality (See, e.g., http://planarity.org.)
that in G the faces in C are bounded by the fun-
damental cycles3 of e1, . . . , e` . The vertices of the
fundamental cycle lie on two paths from the shortest-
path tree. �

4 Dynamic programming

As with algorithms based on tree-width, once we have
reduced the problem to small-radius graphs with a
good recursive partition, dynamic programming can
be used to find a near-optimal solution. Since the
dynamic program is a bit technical, we ease into it
by presenting first a slow but exact version.

4.1 Exact distances: a slow dynamic pro-
gram With every vertex v ∈ V , we associate an
arbitrary face φ(v) incident to v. A cluster C is re-
sponsible for all clients in W ∩ φ−1(C).

Let M be a set of centers. For each cluster C,
we define two functions ∂C → [0, 1] ∪ {∞}. One,
called iM , maps each boundary vertex v ∈ ∂C to the
distance from v to the nearest center in M ∩φ−1(C),
replacing every distance greater than 1 by ∞. The
other, eM , maps each boundary vertex v ∈ ∂C to the
distance from v to the nearest center in M −φ−1(C),
replacing every distance greater than 1 by ∞. We
also set k = |M ∩ φ−1(C)|.

Formally, an interface for a cluster C is a function
i : ∂C → [0, 1] ∪ {∞}. A configuration κ = (i, e, k)
for a cluster C consists of two interfaces i, e and an
integer k.

On the following page we give a dynamic program
that populates a boolean table indexed by clusters
and associated configurations. The table is filled in
bottom-up order of the recursive cluster partition, in
such a way that the entry associated to cluster C
and configuration κ = (i, e, k) of C is true if and only
if there exists a set of centers MC ⊆ φ−1(C) that
conforms to κ in the sense that

1. MC has cardinality k, and

2. iMC = i, and

3. every vertex v ∈W ∩φ−1(C) is within distance 1
of MC or within distance 1−e(w) of some vertex
w ∈ ∂C.

3Let T be a spanning tree of G. For every edge e of G not

in T , joining e with the simple path in T between its endpoints
forms a simple cycle, called the fundamental cycle of e with

respect to T .

To that end, let C0 be a parent cluster with
children C1, C2. For every j ∈ {0, 1, 2}, let κj =
(ij , ej , kj) be a configuration for Cj . We say that
these configurations are compatible if the following
conditions hold.

Budgets k0 = k1 + k2.

Parent’s Incoming Assignments For every
boundary vertex w ∈ ∂C0 with i0(w) 6= ∞,
we have i0(w) = min{d(w, v) + ij(v) : j ∈
{1, 2}, v ∈ ∂C1 ∪ ∂C2}.

Children’s Outgoing Assignments For ev-
ery j ∈ {1, 2} and every boundary ver-
tex v ∈ ∂Cj with ej(v) 6= ∞, we have
ej(v) = min{min{d(v, w) + e0(w) : w ∈
∂C0},min{d(v, w) + i3−j(w) : w ∈ ∂C3−j}}.

The correctness of Algorithm DP follows from
Lemmas 4.1 and 4.2, whose proofs are omitted.

Lemma 4.1. Let M be a set of centers such that
every vertex of W is within distance 1 of M . For
every cluster C, let MC = M ∩ φ−1(C) and let
κC = (iMC , eMC , |MC |). Then MC conforms to κC ,
and, for every parent cluster C0 with children C1, C2,
configurations (κC0 , κC1 , κC2) are compatible.

Lemma 4.2. Let C0 be a parent cluster with children
C1, C2. For j ∈ {0, 1, 2}, let κCj be a configura-
tion for Cj. Let MC1 and MC2 be sets of centers
conforming to κC1

and κC2
respectively. If configu-

rations (κC0
, κC1

, κC2
) are compatible, then MC0

=
MC1

∪MC2
conforms to κC0

.

4.2 Approximate distances: a polynomial-
time dynamic program We now turn our focus
to modifying the dynamic program so that it is
polynomial-time. We observe that, for the dynamic
program to be correct, it suffices by Lemma 4.1 to
consider what we call Lipschitz interfaces. To limit
further the number of interfaces in need of consid-
eration, we modify our definitions and algorithms to
tolerate small one-sided errors in the distances spec-
ified by an interface.

The following elementary lemma enables us to
bound the amount of storage necessary to approx-
imate a 1-Lipschitz function defined on an interval
[a, b].

Lemma 4.3. Let δ > 0 and let f : [a, b]→ [0, 1+ε] be
a 1-Lipschitz function: ∀x, y, |f(x)− f(y)| ≤ |x− y|.
Then there exists a function g approximating f well
in the sense of (4.2) such that g is constant on each
interval (a + (j − 1)δ, a + jδ] and, for every x, g(x)



Algorithm DP

input: triangulation G with nonnegative edge lengths and radius O(ε−1), set of clients W ⊆ V ,
recursive cluster partition, map φ from vertex to incident face

output (exact): the minimum cardinality of a set of centers M
such that every vertex in W is within distance 1 of M

output (approximate): the cardinality of a set of centers M that satisfies Theorem 4.1

For each cluster C in bottom-up order,
For each configuration κ = (i, e, k) of C,

Case C leaf (single face): set T [C, κ] to true if there exists a set of centers MC ⊆ φ−1(C)
such that MC conforms to κ.

Case C parent with children C1, C2: set T [C, κ] to true if there exist configurations κ1, κ2

such that T [C1, κ1] and T [C2, κ2] both are true, and (κ, κ1, κ2) are compatible.
Output the minimum k such that for the root cluster Cr,

there is a configuration κ = (i, e, k) where T [Cr, k] is true.

is an integer multiple of δ and, at each point of
discontinuity, g changes by ±δ.

∀x f(x) < g(x) < f(x) + 3δ(4.2)

Proof. Define g(a + jδ) to be the smallest integer
multiple of δ that is greater than or equal to f(a +
jδ) + δ. For every point x in the interval I =
(a + (j − 1)δ, a + jδ], define g(x) = g(a + jδ). By
construction, g satisfies the first two conditions.

Since f has Lipschitz constant 1,∣∣f(a+ jδ)− f
(
a+ (j − 1)δ

)∣∣ ≤ δ,
so there is at most one integer multiple of δ between
f(a + (j − 1)δ) + δ and f(a + jδ) + δ, and the third
condition holds:

g(a+ jδ)− g
(
a+ (j − 1)δ

)
∈ {0,±δ}.

For every x in the interval (a + (j − 1)(b −
a)/δ, a+j(b−a)/δ], by the Lipschitz condition f(x) <
f(a+ jδ) + δ and the definition of g, we have g(x) ≥
f(a+ jδ) + δ, so the first part of (4.2) holds.

Similarly, by the Lipschitz condition f(x) >
f(a+ jδ)− δ and the definition of g, we have g(x) <
f(a+ jδ) + 2δ, so the second part of (4.2) holds. �

Definition 4.1. A nonnegative real-valued function
whose domain is a subset of vertices of a graph is
Lipschitz if, for every v, w in the domain such that
i(v) + d(v, w) ≤ 1, we have i(w) ≤ i(v) + d(v, w).

Lemma 4.4. Let δ > 0, and let P be a shortest path
in a graph such that P has length at most L. Then
there exists a collection I of Lipschitz functions on
the vertices of P of cardinality 2O(Lδ−1) such that, for

every Lipschitz function ı on V (P ) that is bounded by
L, there exists a function ı̃ ∈ I such that

∀v ∈ V (P ) i(v) ≤ ı̃(v) < i(v) + 3δ.

Proof. Fix a function i from vertices of P to [0, L].
We proceed as follows to define ı̃. Let s be the first
vertex of P . Define the function f such that, for every
v in V (P ),

f
(
d(s, v)

)
= i(v).

Since i is Lipschitz, we can extend f to a continuous
and piecewise affine function f : [0, d(sj , tj)]→ [0, L]
that has Lipschitz constant 1.

Let a = 0 and b = d(s, t) where t is the last
vertex of P , and let g approximate f in the sense
of Lemma 4.3. Note that b ≤ L. Every function g
defined by Lemma 4.3 can be encoded by its initial
value g(a), which is an integer multiple of δ belonging
to the interval [0, L], and by its successive increments
g(a+jδ)−g(a+(j−1)δ) ∈ {0,±δ}. There are O(L/δ)
possibilities for the initial value, three possibilities for
each increment, and O(d(s, t)/δ) ≤ Lδ−1 increments,

for a total of O(L/δ) 3Lδ
−1

= 2O(Lδ−1) possibilities
for g.

Now define ı̃ as follows: for every vertex v of
P , let ı̃(v) = g(d(s, v)). By Lemma 4.3, we have
0 < g

(
d(s, v)

)
− f(d(s, v)) < 3δ, from which the

requisite property of ı̃ readily follows. �

The following lemma establishes the existence of
small collections IC that suffice to prove a weakened
version of the guarantee from Lemma 4.1.

Lemma 4.5. Let δ > 0 and let C be a cluster
belonging to a graph of radius O(ε−1). Then there



exists a collection IC of interfaces of cardinality
2O(ε−1δ−1) such that, for every Lipschitz interface i,
there exists an interface ı̃ ∈ IC satisfying

∀v ∈ ∂C i(v) ≤ ı̃(v) < max{i(v) + 3δ, 1 + 2ε}

Proof. By Corollary 3.1, the boundary ∂C can be
partitioned into a constant number of shortest paths
P1, P2, . . . , PO(1) such that, for every j, Pj is a path
of length O(ε−1) between some pair of boundary
vertices sj , tj ∈ ∂C. Given an interface i, for every
j, let ij be the function defined on the vertices of
Pj that agrees with i except that if i(v) = ∞ then
ij(v) = 1+2ε. We apply Lemma 4.4 to all such maps
ij to construct a collection of approximate maps ı̃j .
We then define IC to be the Cartesian product of
these collections. The bound on the size of IC follows
from Lemma 4.4.

�

Our modified definitions of interface, compatibil-
ity, and conformance are as follows. An interface no
longer gives an exact distance but an upper bound on
that distance, so its codomain is extended slightly to
[0, 1 + ε] ∪ {∞}. Moreover, the value of an interface
for a parent cluster is obtained not just by summing a
distance with the value inherited from a child cluster
but also by rounding the result up to a multiple of δ,
with the effect that every level of the tree hierarchy
introduces an additive error. Formally, an interface
for a cluster C is a function i : ∂C → [0, 1+ ε]∪{∞}.
Let C0 be a parent cluster with children C1, C2. For
every j ∈ {0, 1, 2}, let κj = (ij , ej , kj) be a config-
uration. These configurations are compatible if the
following conditions hold.

Budgets k0 = k1 + k2.

Parent’s Incoming Assignments For every
boundary vertex w ∈ ∂C0 with i0(w) 6= ∞,
we have i0(w) ≥ min{d(w, v) + ij(v) : j ∈
{1, 2}, v ∈ ∂C1 ∪ ∂C2}.

Children’s Outgoing Assignments For ev-
ery j ∈ {1, 2} and every boundary ver-
tex v ∈ ∂Cj with ej(v) 6= ∞, we have
ej(v) ≥ min{min{d(v, w) + e0(w) : w ∈
∂C0},min{d(v, w) + i3−j(w) : w ∈ ∂C3−j}}.

For a cluster C, a configuration κ = (i, e, k) of C,
and a set of centers MC ⊆ φ−1(C), we say that MC

conforms to κ if

1. MC has cardinality k, and

2. i(MC) ≤ i, and

3. every vertex v ∈ W ∩ φ−1(C) is within distance
1 + ε of MC or within distance 1 + ε − e(w) of
some vertex w ∈ ∂C.

The following lemma is the analog of Lemma 4.1.
Let round(x) denote the least integer multiple of δ
greater than or equal to x.

Lemma 4.6. Let h = maxcluster C depth(C), where
depth(C) is the number of clusters C ′ ) C. Let
δ = ε/(6h + 4). Let M be a set of centers such
that every vertex of W is within distance 1 of M .
For every cluster C, let MC = M ∩ φ−1(C) and
let kC = |MC ∩ φ−1(C)|. For every w ∈ ∂C, let
ı̂C(w) = round(iMC

C (w)) +
(
h − depth(C)

)
· 3δ and

êC(w) = round(eMC

C (w)) +
(
h + 1 + depth(C)

)
· 3δ.

This defines a configuration κC = (̂ıC , êC , kC). Then
MC conforms to κC , and, for every parent cluster C0

with children C1, C2, configurations (κC0 , κC1 , κC2)
are compatible.

Proof. To prove that MC conforms to κC , we observe
first that (1) and (2) hold by the definition of our
configurations. As for (3), v is within distance 1 <
1 + ε of MC or within distance 1 of some vertex
x ∈ M −MC . In the latter case, the shortest path
from v to x intersects ∂C at some vertex w, which
implies that d(v, w) + d(w, x) = d(v, x). We bound

êC(w) ≤ d(w, x) + (h+ 1 + depth(C))3δ + δ

≤ d(w, x) + (3(2h+ 1) + 1)δ

= d(w, x) + ε,

and so (3) holds.
Now we prove compatibility between configura-

tions for a parent-child triplet C0, C1, C2. The Bud-
gets condition is trivial. For the Parent’s Incoming
Assignments condition, recall that

iM0 (w) = min{d(w, v) + iMj (v)

: j ∈ {1, 2}, v ∈ ∂C1 ∪ ∂C2}
ı̂0(w) ≥ iM0 (w) +

(
h− depth(C0)

)
· 3δ.

On the other hand,

ı̂Mj (v) ≤ δ + iMj (v) +
(
h− depth(C1)

)
· 3δ.

For j ∈ {1, 2}, we have depth(C0) = depth(Cj) − 1,
so

d(w, v) + ı̂Mj (v)

≤ d(w, v) + iMj (v) +
(
h− depth(C0)

)
· 3δ − 2δ.

For the Children’s Outgoing Assignments condition,
observe that

eMj (v) = min{min{d(v, w) + eM0 (w) : w ∈ ∂C0},
min{d(v, w) + iM3−j(w) : w ∈ ∂C3−j}}.



If the minimum is reached by the first expres-
sion, then the argument is similar (thanks to the
+depth(C) instead of −depth(C) in our definition of
ê). If the minimum is reached by the second expres-
sion, then the additive term is at least 3δ more on
the left than on the right side (thanks to the +1 in
our definition of ê), and the rounding cannot make
up the difference, so together we obtain

êj(v) ≥ min{min{d(v, w) + ê0(w) : w ∈ ∂C0},
min{d(v, w) + ı̂3−j(w) : w ∈ ∂C3−j}}.

This proves compatibility of configurations. �

The following lemma is the analog of Lemma 4.2
but in the approximate setting.

Lemma 4.7. Let C0 be a parent cluster with children
C1, C2. For j ∈ {0, 1, 2}, let κj be a configuration for
Cj. Let MC1 and MC2 be sets of centers conforming
to κC1 and to κC2 respectively. If configurations
(κC0

, κC1
, κC2

) are compatible, then MC0
= MC1

∪
MC2

conforms to κC0
.

Proof. We need to verify that M0 has the correct
cardinality, that i(M0) ≤ iC0 , and that every vertex
v ∈ W ∩ φ−1(C0) is within distance 1 + ε of M0 or
within distance 1 + ε − eC0

(w) of some vertex w ∈
∂C0. The first property follows as before from the
definition of compatibility of (κC0

, κC1
, κC2

) and the
conformance of MC1 ,MC2 to κC1 , κC2 respectively.
Verifying the second and third properties is tedious
but straightforward. �

The dynamic program is then exactly analogous
to the one given in the exact case, with 1 replaced
by 1 + ε and all definitions of interface, configura-
tion, conforming, and compatibility replaced by their
approximate versions. We refer to this algorithm as
Algorithm DP Approx.

Theorem 4.1. Algorithm DP Approx takes as
input a triangulation G of radius O(1/ε), a recursive
partition of G, and a set of clients W ⊆ V (G). In

time nO(ε−2), it gives as output a set M of centers
that covers W within distance 1 + ε, and such that
any set of centers that covers W within distance 1
must have cardinality at least |M |.

5 Extensions

We show how the algorithm of the previous sec-
tion can be extended to handle center costs, vertex
weights or penalties, and bounded-genus graphs.

5.1 Center costs The algorithm can be modified
to handle arbitrary center costs. The budgets ap-
pearing in configurations now are expressed in terms

of total cost, not cardinality. Standard rounding tech-
niques ensure that costs are scaled to integers of poly-
nomial magnitude.

In more detail: the algorithm takes the center
costs as an additional input. These costs may
be of wildly different orders of magnitude, so we
introduce an outer loop to try all possibilities for
cmax, the maximum cost of a center included in the
solution, against which we calibrate the rounding.
We modify the meaning of conformance of a set
of centers MC to a configuration κ = (i, e, k) by
deleting the requirement that |MC | = k and adding
the requirements that for every center v ∈ MC , we
have cost(v) ≤ cmax and that the following equality
holds: ∑

v∈MC

⌈ cost(v)

εcmax/n

⌉
= k.

Observe that, given (1), the left-hand side is at most
n2/ε. For every solution M , regardless of cmax, we
can derive the error bounds

0 ≤ (εcmax/n)
∑
v∈M

⌈ cost(v)

εcmax/n

⌉
−
∑
v∈M

cost(v) ≤ εcmax,

so when cmax is equal to the true maximum, we
achieve the requisite approximation guarantees.

5.2 Client weights Clients can be assigned
weights, and the algorithm can be required to choose
centers so that a given amount of client weight is
(approximately) within a given distance of a chosen
center. To handle this, we modify the dynamic pro-
gram and the algorithm that calls it. In the origi-
nal algorithm, each dynamic-programming table en-
try T [C, κ] was true or false, indicating whether there
was a solution for the given cluster and configuration
in which all clients are covered. Under the modifica-
tion, each entry is a number, the maximum weight
of clients that can be covered. We show the new
pseudocode, with ∆ marking lines that have been
changed.

Since the dynamic program now produces a bud-
get/weight trade-off table, the algorithm that calls it
must optimize the allocation of centers. Again, lines
that have changed are preceded by ∆.

5.3 Client penalties Clients can be assigned
penalties, and the algorithm can be allowed to pay the
penalty for a client vertex in lieu of covering it. Since
the algorithm for weights does not approximate in the
weights, we set the weight of each vertex to be mi-
nus its penalty and interpret the final budget/weight
trade-off table in a different but obvious way.



Algorithm DP-Weights

input: triangulation G with nonnegative edge lengths and radius O(ε−1), set of clients W ⊆ V ,
recursive cluster partition, map φ from vertex to incident face,

∆ vertex weights
∆ output: a budget/weight trade-off table: for every budget k, a quantity that is
∆ at most the maximum weight of vertices in W within distance 1 + ε of centers of cost k and
∆ at least the maximum weight of vertices in W within distance 1 of centers of cost k

For each cluster C in bottom-up order,
For each configuration κ = (i, e, k) of C,

∆ Case C leaf (single face): set T [C, κ] to the maximum of
∆

∑
v∈W∩φ−1(C), d(v,MC)≤1+ε or ∃w∈∂C s.t. d(v,w)+e(w)≤1+ε weight(v)

∆ over all sets of centers MC ⊆ φ−1(C) such that MC conforms to κ.
∆ Case C parent with children C1, C2: set T [C, κ] to the minimum of T [C1, κ1] + T [C2, κ2]
∆ over all configurations κ1, κ2 such that (κ, κ1, κ2) are compatible.
∆ Output, for every budget k, the maximum of T [Cr, κ] over all configurations κ = (i, e, k),
∆ where Cr is the root cluster.

5.4 Bounded-genus graphs For every integer
constant g ≥ 0, the algorithm can be extended to
handle graphs embedded on a surface of genus g. Us-
ing metric shifting (Section 2) and scaling, we obtain
a collection of instances (G,W ) where G is bounded-
genus with radius at most 3 + 2/ε, and finding an
approximate solution of the original instance is re-
duced to finding an approximate solution for each of
the new instances. To each of these new instances, we
apply the following algorithm, whose running time is
bounded by a function of the form f1(g, ε)nf2(ε).

Let T be a shortest-path tree in G. By the tree-
cotree decomposition [9], there is a set of 2g edges
not in T such that cutting the surface along the
fundamental cycles of these edges with respect to T
yields a genus 0 surface. The vertices of these cycles
belong to O(g) shortest-paths. Because of the radius
bound on G, each shortest path has length O(1/ε).
For each of these shortest paths P , the algorithm
selects O(1/ε2) vertices of P , called portals, such
that each vertex on the path is within distance ε/3
of some portal. When the surface is cut along the
fundamental cycles, the vertices on these cycles, and
in particular the portals, get duplicated. Thus each
portal gives rise to at most 2g “clones” in the graph
G′ resulting from the cutting.

Suppose that, in some solution, P is a shortest
path from a center to vertex v. If P passes through
none of the fundamental cycles, then it exists as is
in G′. Otherwise, the path can be perturbed by
introducing a detour along the last cycle crossed,
to the portal nearest to the crossing point. This

increases the length of the path by at most 2ε/3.
Now we continue with the description of the al-

gorithm. Conceptually, we introduce another inter-
nal/external interface pair, for the portals. In greater
detail: for each of the O(g) shortest paths P , consider
a collection IP of discretized Lipschitz functions (in
the sense of Lemma 4.4) from the portals of P to
[0, 2ε−1 + 3], with maximum upward error ε/3. Take
the Cartesian product of all these families. We add
to the existing dynamic program an outer loop over
this collection that guesses the approximately correct
assignment of distances to the portals. The number
of iterations is bounded by a fixed function of g and ε.
For a particular set of centers M ⊆ V , the “correct”
guess for p satisfies for every portal v

dG(v,M) ≤ p(v) ≤ dG(v,M) + ε/3,

similar to the correct guess for e.
Given p, the algorithm attempts to cover the

clients W ′ = {v : v ∈ W, @w s.t. p(w) + dG(w, v) ≤
1 + ε} in G′, via a slight extension of the dynamic
program for planar graphs. Specifically, we enlarge
the definition of a configuration by a set of portals Q.
Conformance of a set of centers M to a configuration
requires additionally that, for every v ∈ Q with
p(v) < ∞, there exists an center w ∈ M satisfying
dG(w, v) ≤ p(v). Compatibility requires additionally
that Q = Q1∪Q2. When the table for the root cluster
is examined, only configurations with Q equal to all
portals are examined.

Now we sketch a proof of correctness. The output
M of the dynamic program is feasible because, for
every client v ∈ W , either v ∈ W ′ or v /∈ W ′. If



Algorithm Main-Weights

input: graph G with nonnegative edge lengths, subset W of vertices,
∆ minimum total weight wmin

∆ output: a budget k such that, for radius 1, at least k centers are required to cover weight wmin, and,
∆ for radius 1 + ε, at most k centers are required

Let s be a vertex of G.
Compute a shortest-path tree in G with root s.
For every shift σ ∈ {0, 1, 2, . . . , ε−1 − 1},

∆ Initialize a budget/weight trade-off table Tσ0 with one entry Tσ0 [0] = 0.
For every j ≥ 0,

Let intervals I = [2jε−1 − 2σ, 2(j + 1)ε−1 − 2σ)
and I+ = [2jε−1 − 1− 2σ, 2(j + 1)ε−1 + 1− 2σ).

Let Wσ
j = {v ∈W : dG(s, v) ∈ I}.

Let V σj = {v ∈ V (G) : dG(s, v) ∈ I+}.
Let Eσj be the restriction of E(G) to Vj × Vj .
Let Gσj denote the graph with vertices {s} ∪ V σj and

edges Eσj ∪ {sv : v ∈ Vj , v’s parent not in Vj},
where the extra edges sv have length 1.

∆ For input (Gσj ,W
σ
j ), find the trade-off table Uσj using Algorithm DP-Weights.

∆ For every k, let Tσj+1[k] be the maximum of Tσj [k1] + Uσj [k2]
∆ over all k1, k2 such that k1 + k2 = k.
∆ T ← best of Tσj+1 over all values of σ, where j takes on its maximum relevant value.
∆ Output the minimum budget k such that T [k] ≥ wmin.

v /∈ W ′ then, by the same proof of correctness as in
the planar case, there exists a center w ∈ M such
that dG(w, v) ≤ dG′(w, v) ≤ 1 + ε. Otherwise, there
exists a portal w with p(w) + dG(w, v) ≤ 1 + ε. By
the new definitions of conformance and compatibility,
there exists a center x such that dG(x,w) ≤ p(w),
implying that

dG(x, v) ≤ dG(x,w) + dG(w, v)

≤ p(w) + dG(w, v) ≤ 1 + ε.

Conversely, suppose that M is an optimal solu-
tion with coverage radius 1. We show that the dy-
namic program finds a solution at least as good. The
correct guess for p is as mentioned previously. For
every cluster C, we choose configurations as in the
planar case and set

QC = {v : v is a portal, dG(v, M ∩ φ−1(C)) ≤ p(v)}.

Compatibility is clear, and QCr
is all portals, where

Cr is the root cluster. Every client whose shortest
path to the nearest center crosses a fundamental cycle
in G is excluded from W ′ because, even after making
a detour to a portal of round-trip distance at most
2ε/3 and incurring error of ε/3 on the value of p at

that portal, the total distance is at most 1 + ε. The
remaining clients are covered in G′ by M .
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