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Abstract. For a rooted graph G, let EV (G; p) be the expected number of ver-

tices reachable from the root when each edge has an independent probability p
of operating successfully. We examine combinatorial properties of this polyno-

mial, proving that G is k-edge connected iff EV ′(G; 1) = · · · = EV k−1(G; 1) =

0. We find bounds on the first and second derivatives of EV (G; p); applications
yield characterizations of rooted paths and cycles in terms of the polynomial.

We prove reconstruction results for rooted trees and a negative result con-

cerning reconstruction of more complicated rooted graphs. We also prove the
norm of the largest root of EV (G; p) in Q[i] gives a sharp lower bound on the

number of vertices of G.

1. Introduction

Graph polynomials have a long history, dating to Birkhoff’s use of the chromatic
polynomial in an (unsuccessful) attempt to prove the four color theorem [7]. Two
other polynomials, the reliability polynomial [13] and the 2-variable Tutte polyno-
mial [8], also encode combinatorial data about the graph (the Tutte polynomial
specializes to both the chromatic and reliability polynomials). While the original
motivation for the study of these invariants is still important, much of the current
interest in the Tutte polynomial is not related to any of its applications. See [9, 15]
for some recent combinatorial applications.

It is in this spirit that we continue the study of the expected value polynomial
EV (G; p) applied to a rooted graph G, i.e., a graph with a distinguished vertex.
The polynomial was introduced in [1] and [2], extended to antimatroids in [19],
and applied to rooted graphs in [5, 20]. A closely related polynomial, called pair
connected reliability by Amin, et. al. in [3, 4, 23, 22] and network resilience by
Colbourn in [14], is motivated by the reliability polynomial. A similar polynomial
has also been defined for (non-rooted) graphs [6, 24].

In this paper, we concentrate on combinatorial properties of the rooted graph
and their connection to the polynomial. In the sequel [16], we turn to applications,
including practical questions about optimal location for the root for a given graph,
randomness and estimation.

Section 2 is concerned with bounds on the first and second derivatives of EV (G; p).
Applications of these bounds to the edge connectivity of the graph and graph re-
construction are given. The main result is Theorem 2.7:

Theorem 2.7 If G is a rooted graph, then G is k-edge-connected if and only if
EV ′(G; 1) = · · · = EV (k−1)(G; 1) = 0.
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Section 3 examines the behavior of EV (G; p) under standard graph-theoretic
constructions. We give limits on the possibility of reconstructing G from EV (G; p).
When G is a rooted cycle or a rooted path, reconstruction is possible; in almost all
other cases, it is not possible.

Theorem 3.4

(1) EV (G; p) = p + · · · + pn if and only if G is isomorphic to the rooted path
Pn−1.

(2) EV (G; p) = 2p + · · ·+ 2pn−1 + (n− 1)pn if and only if G is isomorphic to
the rooted cycle Cn.

Conversely, Theorem 3.1 shows that any rooted graph is a subgraph of another
rooted graph with a linear expected value polynomial. In a slightly different direc-
tion, Theorem 3.9 shows that rooted trees can be reconstructed from a family of
expected rank polynomials.

In Section 4 we give connections between the maximum norm of the zeroes of
EV (G; p) in C and the number of vertices of G. This section is motivated by the
study of the roots of the chromatic polynomial, which has connections to statistical
physics [11, 21]. Our main result is Theorem 4.3:

Theorem 4.3 Let G be a connected rooted graph with n > 1 vertices. Suppose that
the polynomial EV (G; r) = 0 for some r ∈ Q[i]. Then |r − 1| ≤ n− 1.

While many of the proofs given here are straightforward (especially those con-
cerning derivatives of the one-variable polynomial), we believe the results are of
sufficient interest to warrant further study. These results show that the polynomial
encodes meaningful information about the rooted graph, but we also place bounds
on how successful such an approach can be (Theorem 3.1).

We thank Jennifer Feder and Greg Francos for useful discussions and the anony-
mous referee for several suggestions.

2. Derivatives and edge connectivity

Let G be a connected rooted graph with edge set E where each edge has the same
independent probability p of being operational. We give two equivalent formulations
of the expected rank polynomial, both of which will be important throughout this
work. For a non-root vertex v, let Pr(v) denote the probability that v remains
connected to the root. The following result appears explicitly in [5] and implicitly
in [14] and [3, 4].

Definition 2.1 (Proposition 2.7 of [5]). Let G be a rooted graph and let V be all
the non-root vertices of G. Then

EV (G; p) =
∑
v∈V

Pr(v).

We will also need the following deletion-contraction expansion for the polyno-
mial.

Proposition 2.2 (Deletion-Contraction: Proposition 2.3 of [5]). Let G be a rooted
graph and let e (6= loop) be an edge adjacent to the root. Then

EV (G; p) = (1− p) · EV (G− e; p) + p · EV (G/e; p) + p.
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We will use the deletion-contraction formula of 2.2 repeatedly in this section.
Throughout this section, we will assume an edge e incident to the root is not a loop
(loops have no effect on the polynomial).

Example 2.3. We consider the expected rank polynomial EV (Kn; p) for the rooted
complete graph. This example is important since any random graph can be thought
of as a subgraph of Kn. Obtaining closed form expressions for EV (Kn; p) is difficult;
see [4] for one approach. When applying deletion-contraction to Kn, multiple edges
arrise, and this gives rise to a recursive formula for EV (Kn; p). (Replacing e by
k multiple edges can be thought of as increasing the probability that e succeeds
from p to 1 − qk, where q = 1 − p.) If G′ is obtained from the rooted graph G by
replacing every edge of G by k parallel edges, then EV (G′) = EV (G; 1− qk). The
proof of the next proposition follows from this observation.

Proposition 2.4. Let q = 1− p. Then

EV (Kn; p) =

n−1∑
k=1

(
n− 1

k

)
piqn−1−k

(
EV (Kn−k; 1− qk) + k

)
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Figure 1. Graphs of EV (Kn; p)/(n− 1) for n = 2, . . . , 10.

For fixed p > 0, we have EV (Kn; p)/(n− 1)→ 1 as n→∞. This follows from a
famous result of Erdös and Rényi [18]. If p >> log n/n, then the probability that G
is connected approaches 1 as n→∞. Graphs of EV (Kn; p)/(n− 1) for 2 ≤ n ≤ 10
appear in Figure 1.

We now turn our attention to the derivative EV ′(G; p), which is closely related
to the connectivity of the rooted graph G. We begin by deriving sharp bounds on
the size of EV ′(G; p) and EV ′′(G; p).

We omit the straightforward proof of the lemma.

Lemma 2.5. Let G be a rooted graph with an edge e incident to the root. Then
for all p ∈ [0, 1], 1 + EV (G/e; p) ≥ EV (G− e; p), with equality possible only when
p = 1.

It is easy to see that EV ′(G; p) ≥ 0 for all 0 ≤ p ≤ 1: increasing p increases the
expected number of vertices reachable from the root, so EV (G; p) is an increasing
function. We now give sharp upper and lower bounds on EV ′(G; p) and an upper
bound on the second derivative |EV ′′(G; p)|.
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Proposition 2.6. Let G be a rooted graph with n edges. Then for all p ∈ [0, 1],

(1) EV ′(G; p) ≥ 0. This inequality is strict if G has an edge incident to the
root and p < 1.

(2) EV ′(G; p) ≤ n(n + 1)/2.
(3) |EV ′′(G; p)| ≤ (n− 1)n(n + 1)/3.

Proof. We prove (2) – the proofs of (1) and (3) are similar.
Proof of (2): We proceed by induction on n, and the base case n = 0 is trivial.

When n > 0, we differentiate the formula 2.2:

EV ′(G; p) = (1 + EV (G/e; p))− EV (G− e; p)

+ pEV ′(G/e; p) + (1− p)EV ′(G− e; p)

If G has no edge e incident to the root, EV ′(G; p) = 0. Otherwise, we examine
each term in this formula:

First, note that 1 + EV (G/e; p) ≤ n since EV (G/e; 1) = n− 1 and EV (G; p) is
an increasing function. Also, EV (G− e; p) ≥ 0 is clear. Finally,

pEV ′(G/e; p) + (1− p)EV ′(G− e; p) ≤ (n− 1)n/2

by induction. Putting the pieces together gives EV ′(G; p) ≤ n(n + 1)/2.
�

Notes

(1) The lower bound 2.6(1) is sharp for all 2-edge-connected graphs at p = 1.
For the rooted cycle Cn,

EV ′(Cn; p) =

n−1∑
k=1

2kpk−1 − n(n− 1)pn−1,

so EV ′(Cn; 1) = 0.
(2) The upper bound 2.6(2) is also sharp for rooted paths with n edges. If

Pn+1 denotes the rooted path on n edges with root located at a leaf, then

EV (Pn+1; p) =

n∑
k=1

pk,

so EV ′(Pn+1; 1) =
∑n
k=1 k = n(n + 1)/2. The converse is also true when

p = 1: If EV ′(G; 1) = n(n+ 1)/2, then G is a rooted path (Lemma 3.3(1)).
(3) Note that it is not possible to bound EV ′(G; p) in terms of the number of

vertices: if G is a graph with two vertices joined by k edges then EV (G; p) =
1− (1− p)k, so EV ′(G; 0) = k.

(4) The bounds of 2.6(3) are sharp for paths (upper bound) and cycles (lower
bound) with n edges (Pn+1 and Cn), again at p = 1. We will also prove a
converse for the lower bound: If EV ′′(G; 1) = −(n− 1)n(n + 1)/3, then G
is the rooted cycle Cn (Lemma 3.3(2)).

It is possible to derive bounds for even higher derivatives in this fashion, but
these bounds will not be sharp, in general, with the exception of the lower bound
for the third derivative. Further, the expected value polynomials of paths and cycles
do not have maximal and minimal derivatives of all orders at p = 1.
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Note that the second derivative of the deletion-contraction formula 2.2 simplifies
when p = 1 :

EV ′′(G; 1) = 2EV ′(G/e; 1)− 2EV ′(G− e; 1) + EV ′′(G/e; 1).

This allows us to rewrite the upper bound in 2.6(3) in terms of the number of
vertices of G, since G/e has one fewer vertex than G.

Recall that G is k-edge connected if removing fewer than k edges from G cannot
disconnect G. The next result shows that k-edge connectivity is determined by
EV (G; p).

Theorem 2.7. If G is a rooted graph, then G is k-edge-connected if and only if
EV ′(G; 1) = · · · = EV (k−1)(G; 1) = 0.

Proof. From 2.1, we have

EV (G; p) =
∑
v∈V

Pr(v),

where Pr(v) is the probability that v is connected to the root. Fix v and let
S1, . . . , Sn be the minimal subsets of E that, when removed, disconnect v from the
root. Let F (S) be the probability that all edges in S fail. Then we can compute
Pr(v) in terms of F (S) via inclusion-exclusion:

Pr(v) = 1− F (S1)− · · · − F (Sn) + F (S1 ∪ S2) + · · · ± F (S1 ∪ · · · ∪ Sn).

Now F (Si) = (1 − p)|Si|, so Pr(v) = 1 +
∑m
j=1 aj(1 − p)j . Clearly, if k is the size

of the smallest Si, then a1 = · · · = ak−1 = 0 and ak 6= 0 (in fact, we must have
ak < 0). Finally, summing over all vertices gives the result.

�

As a quick check, note that EV ′(T ; 1) > 0 for any tree having n > 0 edges,
so Theorem 2.7 shows any tree is 1-edge connected. For the cycle Cn, we have
EV ′(Cn; 1) = 0, (see the remarks immediately following 2.6), but EV ′′(Cn; 1) =
−(n − 1)n(n + 1)/3, so the theorem gives a verification that cycles are 2-edge
connected.

When G is not rooted, Proposition 2.2 of [6] shows that EV ′(G; 1) = 0 iff G
is connected, where EV (G; p) is defined using the matroid (cycle) rank function.
In this case, the value of |EV ′(G; 1)| is just the number of isthmuses of G. Thus,
Theorem 2.7 is a rooted generalization of this result.

3. Reconstructing graphs and an embedding theorem

EV (G; p) is defined via connectivity; thus, it is not surprising that graph recon-
struction is not possible using this invariant. The next theorem, one of the main
results of this section, is a negative reconstruction result.

Theorem 3.1. Let G be a rooted graph. Then there is a rooted graph G′ such that
G is an induced subgraph of G′ and EV (G′) = kp for some positive integer k.

Proof. Let EV (G; p) = a1p + a2p
2 + · · · + anp

n, where ai ∈ Z, and an 6= 0. We
first show how to find a graph H1 with the property that EV (G ⊕ H1; p) has
degree less than n. We then iterate this procedure, eventually producing a graph
G′ = G⊕H1 ⊕ · · ·Hn−1 so that EV (G′; p) is a linear polynomial.
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Case 1. an < 0. Let H1 be the direct sum of an copies of the path Pn+1, the path
with n edges, with each path rooted at a vertex of degree 1. Since EV (Pn+1; p) =∑n
k=1 p

k, we have find that the degree of EV (G⊕H1) is at most n− 1.

Case 2. an > 0. First attach k n-cycles to the root of G, where k(n − 1) > an,
and call the new graph G1. Now EV (G1; p) = bnp

n + · · · has degree n, and bn =
an − k(n− 1) < 0, by construction. Now proceed as in case 1.

Now iterate this procedure to produce rooted graphs H2, H3, . . . so that the
degree of EV (G ⊕ H1 ⊕ · · · ⊕ Hk) is at most n − k. This process will terminate
when k = n− 1.

�

Example 3.2. We apply (a variation of) the procedure described in the proof of
Theorem 3.1 to the rooted cycle C3. First, note that EV (C3; p) = 2p + 2p2 − 2p3.
We attach a tree H1 with EV (H1; p) = p + p2 + 2p3, as in Figure 2. This gives
EV (C3 ⊕H1; p) = 3p + 3p2.

*

S9

*

G’

Figure 2. EV (S9; p) = EV (G′; p) = 9p.

Now let H2 = C2 ⊕ C2 ⊕ C2, so EV (H2; p) = 6p − 3p2. Thus EV (G′; p) = 9p,
where G′ = C3 ⊕H1 ⊕H2.

For example, if we let Ak denote the rooted graph formed by k parallel edges,
then EV (C2 ⊕ C2 ⊕ C2 ⊕ C2; p) = EV (A3 ⊕A3 ⊕ C3; p) = 8p− 4p2.

Given Theorem 3.1, it is quite easy to construct non-isomorphic graphs with
the same expected value polynomial. However, for certain classes of graphs, G
can be uniquely reconstructed from EV (G; p). We now show how rooted cycles are
completely determined (within the class of all rooted graphs) by these polynomials.
Recall that Pn+1 denotes the rooted path with n edges.

Lemma 3.3. Let G be a rooted graph with n edges.

(1) EV ′(G; 1) = (n + 1)n/2 if and only if G is isomorphic to Pn+1.
(2) EV ′′(G; 1) = −(n + 1)n(n− 1)/3 if and only if G is isomorphic to Cn.
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Proof. We prove (1) and leave the similar proof of (2) to the reader. From the
remarks following the proof of Proposition 2.6(2), EV ′(Pn+1; 1) = n(n + 1)/2.

For the converse, we use induction. If G has 1 edge, then there is nothing to
prove. Now suppose n > 1 and EV ′(G; 1) = (n+ 1)n/2. If G has no edges incident
to the root, then EV ′(G; 1) = 0, so we may assume e is incident to the root. Then,
as in the proof of 2.6(2), we have EV ′(G; 1) = 1 + EV (G/e; 1) − EV (G − e; 1) +
EV ′(G/e; 1).

Now EV (G/e; 1) ≤ n − 1 (since G − e has n − 1 edges) and EV (G − e; 1) ≥ 0.
Thus,

EV ′(G/e; 1) = EV ′(G; 1)− EV (G/e; 1) + EV (G− e; 1)− 1,

which gives EV ′(G/e; 1) ≥ (n + 1)n/2− (n− 1)− 1 = n(n− 1)/2. By Proposition
2.6(2), we have EV ′(G/e; 1) = n(n − 1)/2, which forces each of the inequalities
given above to be equalities. Thus, EV (G− e; 1) = 0, so e is the only edge incident
to the root of G, and EV (G/e; 1) = n− 1, so G/e is connected. Furthermore, since
EV ′(G/e; 1) = n(n−1)/2, we have G/e is isomorphic to the path Pn, by induction.

Now we have a rooted graph G with exactly one edge e incident to the root such
that G/e is the path Pn. This forces G to be the path Pn+1.

�

An immediate consequence of Lemma 3.3 is the following.

Theorem 3.4. (1) EV (G; p) = p + · · ·+ pn if and only if G is isomorphic to
the rooted path Pn−1.

(2) EV (G; p) = 2p + · · ·+ 2pn−1 + (n− 1)pn if and only if G is isomorphic to
the rooted cycle Cn.

Obviously, for any positive integer k, it is possible to produce k non-isomorphic
rooted trees, all sharing the same expected value polynomial. On the other hand,
it is possible to uniquely reconstruct a rooted tree from a sequence of expected rank
polynomials. We begin with a definition.

Definition 3.5. Let G be a rooted graph. Then the expected rank k polynomial is
defined by

EVk(G; p) =
∑

A⊆E:r(A)=k

p|A|(1− p)|E|−|A|,

where r(A) is the number of vertices in the component of A containing the root
(not including the root).

Thus, EVk(G; p) is the probability that exactly k vertices are connected to the
root. The proof of the next proposition is immediate.

Proposition 3.6. Let G be a rooted graph with n + 1 vertices. Then

(1)
∑n
k=1 EVk(G; p) = 1,

(2) EV (G; p) =
∑n
k=1 k · EVk(G; p).

To keep track of this sequence of expected rank k polynomials, it is convenient
to introduce a 2-variable generating function.

Definition 3.7. Let T be a rooted tree, and let X(T ) be a tree with a single edge
e adjacent to the root such that X(T )/e = T . Then define F (T ; p, q) recursively as
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follows:

F (•) = 1

F (X(T )) = q + pF (T )

F (T1 ⊕ T2) = F (T1)F (T2)

The connection between the generating function F (T ; p, q) and the sequence of
rank k expected rank polynomials EVk(T ; p) is made explicit in the next proposi-
tion.

Proposition 3.8. F (T ; p, q) is uniquely recoverable from the sequence of polynomi-
als EV0, . . . , EVn, where EVk is the probability that exactly k vertices are connected
to the root.

Proof. Let EVk(p) = pkgk(p). Then set q = 1 − p, so p = 1 − q, and it is easy
to show F (T ) =

∑
k p

kgk(1− q). Thus, we can recover F (T ) from the sequence of
polynomials, and this operation is easily invertible.

�

We now prove that rooted trees can be uniquely reconstructed from their se-
quence of rank k expected rank polynomials {EV0, . . . , EVn}.

Theorem 3.9. Let T be a rooted tree. Then F (T (p, q)) uniquely determines T up
to isomorphism.

Proof. It suffices to show that for all T , F (X(T )) is irreducible over Z[p, q]. The
result then follows by induction: if F (T ; p, q) factors, we reconstruct the rooted
trees corresponding to the factors inductively. If F (T ; p, q) is irreducible, we will
have T = X(T ′) for some rooted tree T ′, and F (T ′; p, q) = p−1(F (T ; p, q) − q), so
we can reconstruct T ′ (and hence, T ) inductively again.

Now write F (T ) = q + pG(p, q) for some polynomial G(p, q) and suppose that
F (X(T )) = AB. Then F (X(T )) = (1 + pA′)(q + pB′) for some two-variable
polynomials A′ and B′. If q | B′, then q | (q + pB′), so q | F (X(T )), which cannot
be the case since F (X(T )) has exactly one pure p term: pn, corresponding to all n
edges operating successfully.

Hence q does not divide B′ and we let cpα with c 6= 0 be the pure p term in B′

of lowest degree. Then F (X(T )) contains a term cpα that cannot be canceled by
p2A′B′. As a result, A′ = 0 and the factorization is trivial.

�

The sequence {EV0, . . . , EVn} is equivalent to the (greedoid) Tutte polynomial
of a rooted tree, which encodes information about the number of rooted subtrees
of size k with exactly l leaves. More information about rooted tree reconstruction
from this version of the Tutte polynomial can be found in [2, 12]. (Unrooted tree
reconstruction is not possible in general – see [17].)

4. Zeroes of the polynomial

Proposition 3.1 of [20] shows that the largest rational root of EV (G; p) is a lower
bound on the number of vertices (including the root). We generalize this result now,
extending the bound to the absolute value of the largest rational root.

Proposition 4.1. Let G be a connected rooted graph with n > 1 vertices. Suppose
the polynomial EV (G; r) = 0 for some r ∈ Q. Then |r − 1| ≤ n− 1.
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Proof. Let f(p) = EV (G; p + 1). Then we can write

f(p) = (a− bp)g(p)

where a/b = r − 1 and g ∈ Z[p]. f(0) = a · g(0) = n − 1, so a | (n − 1); and since
|a/b| ≤ |a|, |r − 1| ≤ n− 1.

�

We can extend this result further, to the case where the root r ∈ Q[i].

Proposition 4.2. Let G be a connected rooted graph with n > 1 vertices. Suppose
the polynomial EV (G; r) = 0 for some r ∈ Q[i]−Q. Then |r − 1|2 ≤ n− 1.

Proof. Again, let f(p) = EV (G; p+ 1) and write (a+ bi)/c = r− 1 for integers a, b
and c. Then

f(p) = (a2 + b2 − 2a(cp) + (cp)2)g(p)

where g(p) ∈ Z[p]. Since n− 1 = f(0) = (a2 + b2)g(0), and a2 + b2 | n− 1. We have
a2 + b2 = |c(r − 1)|2 ≥ |r − 1|2, so |r − 1|2 ≤ n− 1.

�

Putting Propositions 4.1 and 4.2 together gives the following.

Theorem 4.3. Let G be a connected rooted graph with n > 1 vertices. Suppose
that the polynomial EV (G; r) = 0 for some r ∈ Q[i]. Then |r − 1| ≤ n− 1.

All of these bounds are sharp. For the rational roots of Proposition 4.1, let
G1 be a graph with one vertex connected to the root by two edges and k vertices
connected by one edge. Then EV (G1; p) = (k + 2)p − p2, which has a root at
p = k + 2. For the lower bound, if we let G2 be a tree with polynomial kp + p2,
then EV (G2; p) has a root at p = −k.

For the imaginary rational roots of 4.2, let a2 + b2 = c2 be a Pythagorean triple
and let T be a tree with polynomial ((a−1)2+b2)p+2(a−1)p2+p3. Then EV (T ; p)
has roots at p = 1− a± bi, and T has ((a− 1) + 1)2 + b2 + 1 = c2 + 1 vertices and
|1− a± bi− 1| = c.

The next result is applicable to any polynomial f(p) with positive integer coef-
ficients and f(0) = 0.

Proposition 4.4. Let T be a tree with n > 1 vertices. Suppose the polynomial
EV (T ; z) = 0 for some z ∈ C. Then |z| ≤ n− 2.

Proof. EV (T ; p) = n1p + n2p
2 + · · · + nkp

k for positive integers nj . Let C =
n1 + · · ·+ nk−1. Then C ≤ n− 2, since n1 + · · ·+ nk = n− 1.

When C = 0, EV (T ; p) = nkp
k, which has zeros only at p = 0. Otherwise we

can assume that C ≥ 1. Suppose to the contrary that |z| > C. Then

| − nkz
k| > C|zk−1| > n1|z|+ · · ·+ nk−1|zk−1| > |n1z + · · ·+ nk−1z

k−1|

and z is clearly not a zero.
�

When T is a tree, Proposition 4.4 allows us to drop the restriction that r ∈ Q[i].

Corollary 4.5. Let T be a tree with n > 1 vertices. Suppose the polynomial
EV (T ; p) has a zero at p = z ∈ C. Then |z − 1| ≤ n− 1.
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Unfortunately, this bound does not extend to all graphs and all complex zeros.
For example, let G = K4⊕T , where T is a tree such that EV (T ; p) = p+ p2 + p3 +
p4 + p5 + 5p6. Then EV (G; p) = 4p+ 7p2 + p3− 20p4 + 22p5− p6, which has a zero
near p = 21. G, however, has only 14 vertices and 16 edges.

Similar constructions work with larger complete graphs, where we attach the
smallest tree that will make the leading coefficient of EV (G; p) equal to −1.

It would be interesting to determine what other restrictions exist on zeros of
the polynomial. This is similar to much of the current research on the chromatic
polynomial of a graph [11], [21].

References

[1] M. Aivaliotis, A probabilistic approach to network reliability in graph theory, Honors thesis,

Lafayette College, 1998.
[2] M. Aivaliotis, G. Gordon and W. Graveman, When bad things happen to good trees, J. Graph

Theory 37 (2001), 79-99.

[3] A. Amin, K. Siegrist and P. Slater, Pair-connected reliability of a tree and its distance degree
sequences, Cong. Numer. 58 (1987), 29-42.

[4] A. Amin, K. Siegrist and P. Slater, Exact formulas for reliability measures for various classes

of graphs, Cong. Numer. 58 (1987), 43-52.
[5] A. Bailey, G. Gordon, M. Patton, J. Scancella, Expected value expansions in rooted graphs,

Disc. Appl. Math. 128 (2003), 555-571.

[6] J. Benashski, R. Martin, J. Moore and L. Traldi, On the β-invariant for graphs, Cong.
Numer., 109 (1995), 211-221.

[7] G. D. Birkhoff, A determinant formula for the number of ways of coloring a map, Ann.

Math. 14 (1912), 42-46.
[8] T. Brylawski and J. Oxley, The Tutte polynomial and its applications, in Matroid Applica-

tions, vol. 40 (N. White, ed.), Cambridge Univ. Press (1992), 123-225.
[9] J. Bonin and W. Miller, Characterizing combinatorial geometries by numerical invariants,

European J. Combin. 20 (1999), 713–724.

[10] T. Brecht and C. Colbourn, Lower bounds on two-terminal network reliability, Disc. Appl.
Math. 21 (1988), 185-198.

[11] J. Brown, C. Hickman, A. Sokal, D. Wagner, On the chromatic roots of generalized theta

graphs, J. Comb. Theory Ser. B 83 (2001), 272-297.
[12] S. Chaudhary and G. Gordon, Tutte polynomials for trees, J. Graph Theory 15 (1991) 317-

331.

[13] C. Colbourn, The combinatorics of network reliability, Oxford University Press, Oxford, 1987.
[14] C. Colbourn, Network resilience, SIAM J. Alg. Disc. Meth. 8 (1987), 404-409.

[15] A. de Mier and M. Noy, On graphs determined by their Tutte polynomials, Graphs Combin.

20 (2004), 105–119.
[16] D. Eisentstat, J. Feder, G. Francos, G. Gordon, and A. Redlich, Optimality and randomness

in rooted graphs, to appear in Disc. Appl. Math.
[17] D. Eisenstat and G. Gordon, Non-isomorphic caterpillars with identical subtree data, Disc.

Math. 306 (2006) 827-830.
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