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Abstract. The greedoid Tutte polynomial of a tree is equivalent to a gener-

ating function that encodes information about the number of subtrees with I
internal (non-leaf) edges and L leaf edges, for all I and L. We prove that this

information does not uniquely determine the tree T by constructing an infi-

nite family of pairs of non-isomorphic caterpillars, each pair having identical
subtree data. This disproves conjectures of [2] and [6] and contrasts with the

situation for rooted trees, where this data completely determines the rooted

tree.

1. Introduction

When T is a rooted tree, the greedoid Tutte polynomial f(T ) uniquely determines
T (Theorem 2.8 of [7]). In this note we show that this result does not extend
to unrooted trees: we construct an infinite collection of pairs of non-isomorphic
caterpillars (trees in which all of the non-leaf vertices form a path), each pair having
the same greedoid Tutte polynomial (Corollary 2.7). This extends a construction
in [5], where caterpillars with the same degree sequence and path data are created
using a generating function approach.

From a combinatorial perspective, this greedoid Tutte polynomial encodes data
about the number of subtrees of the tree with I internal (non-leaf) edges and L
leaf edges. In fact, the greedoid Tutte polynomial is equivalent to a two-variable
generating function

∑
S x

I(S)yL(S), where the subtree S has I(S) non-leaf and L(S)
leaf edges and the sum extends over all subtrees. Thus, our main result (Theorem
2.6) can be stated purely combinatorially:

Main Result: Let c(T ; I, L) denote the number of subtrees of the tree T
having exactly I internal edges and L leaf edges. Then there exist infin-
itely many pairs of non-isomorphic trees T1 and T2 such that c(T1; I, L) =
c(T2; I, L) for all I and L.

Attempts to reconstruct graphs or matroids from polynomials have been at-
tempted before. See [3] and [4] for classes of matroids and graphs for which unique
reconstruction is possible. Note that de Mier and Noy consider the standard Tutte
polynomial; we use a greedoid version of this invariant (see remarks following Defi-
nition 2.2.
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2. The counterexamples

Let T be a tree with edge set E, where |E| = n. We define the rank of a subset
of edges as follows.

Definition 2.1. For A ⊆ E, the rank of A is given by

r(A) = max
F⊆A
{|F | : F is the complement of a subtree of T}.

This rank function is the pruning rank of the tree: for A ⊆ E, we have r(A) is the
largest number of edges in A which can be pruned from A, where the pruning process
removes leaves, one by one, until no more leaves remain. During this process, edges
that are not leaves initially (and hence, cannot be pruned initially) may become
available for pruning later.

Definition 2.1 gives the tree T an antimatroid structure, but we will not need this
generality here. However, we do point out that the antimatroid structure completely
determines the tree; in particular, it is possible to uniquely reconstruct the tree from
the rank function of the antimatroid (Cor. 3.5 of [1]). Thus, the counterexamples
given in this section provide examples of non-isomorphic antimatroids sharing the
same greedoid Tutte polynomial.

Definition 2.2. Let T be a tree with rank function as in Definition 2.1. Then the
greedoid Tutte polynomial is defined by

f(T ; t, z) =
∑
A⊆E

tn−r(A)z|A|−r(A).

This definition gives the standard Tutte polynomial of a graph (more precisely,
the Whitney corank-nullity polynomial) when we use the cycle-rank function (i.e.,
r(A) is the size of the largest cycle free subset of A). To avoid confusion, we refer to
the polynomial considered here as the greedoid Tutte polynomial throughout this
note. We point out that the standard Tutte polynomial of a tree is simply (t+1)|E|,
and so is of (essentially) no value in this situation. More information about the
connection between these invariants can be found in [7].

We will need a combinatorial reformulation of the greedoid Tutte polynomial as
a generating function.

Definition 2.3. Let T be a tree. Then the subtree leaf–non-leaf generating function
is defined by

g(T ;x, y) =
∑
S

xI(S)yL(S),

where the sum extends over all subtrees of T.

The connection between the greedoid Tutte polynomial and the generating func-
tion g(T ;x, y) is given in Proposition 13(b) of [2].

Proposition 2.4. Let T be a tree with greedoid Tutte polynomial f(T ; t, z), and let
g(T ;x, y) =

∑
S x

I(S)yL(S), where the sum extends over all subtrees of T. Then

g(T ;x, y) = f(T ; y, xy−1 − 1);(1)

f(T ; t, z) = g(T ; t(z + 1), t− 1).(2)
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We will use the following notation. Let T be a caterpillar with spine {v1, . . . , vr},
and let di be the degree of vertex vi. Fix positive integers k and m with 1 ≤ k <
m ≤ r and define

ei(k,m) =

{
di − 2 if k < i < m,
di − 1 if i = k or i = m.

Finally, for positive integers i and j with k ≤ i < j ≤ m (where k and m are

fixed as before), let si,j =
∑j

c=i ec(k,m).

Lemma 2.5. Let T be a caterpillar with spine {v1, . . . , vr}. Then the number of
subtrees of T with L leaves and I non-leaves is

r−I∑
i=1

((
si,i+I

L

)
−
(
si,i+I−1

L

)
−
(
si+1,i+I

L

)
+

(
si+1,i+I−1

L

))
Proof. Note that a subtree with exactly I internal edges must have non-leaf vertices
{vi, . . . , vi+I} for some 1 ≤ i ≤ r− I. We now choose L vertices which are adjacent
to these vertices to form L leaves, paying attention to two considerations:

(1) vi and vi+I must each have at least one adjacent vertex chosen; otherwise
vi or vi+I would be a leaf and S would not have I internal edges.

(2) For the dk vertices adjacent to vk, note that two vertices are already used
(vk−1 and vk+1) when i < k < i+ I and one vertex is already used at the
endpoints vi and vi+I .

The first consideration above is resolved easily: count all possible ways to select
L vertices as leaves, then subtract those selections in which no vertices adjacent to
vi or vi + I are chosen. Finally, add in those selections in which both vi and vi+I

are excluded, since these have been removed twice.
For the second consideration, just count the number of vertices which legitimately

can be chosen as leaves: each vk has dk−2 possible choices (for i < k < i+I), while
vi and vi+I have di − 1 and di+I − 1 choices, respectively. This coincides precisely
with the definition of the ei(k,m).

�
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Figure 1. T1(α, β) and T2(α, β) have the same subtree data for all α and β.

Theorem 2.6. Let T1(α, β) be a caterpillar with (non-leaf) degree sequence {α +
1, β + 1, α + 1, α + β + 1, β + 1} and let T2(α, β) be a caterpillar with (non-leaf)
degree sequence {α+ 1, α+ β + 1, β + 1, α+ 1, β + 1}, as in Figure 1, where α and
β are positive integers. Then g(T1) = g(T2).

Proof. We must show that T1 and T2 have the same number of subtrees with L
leaves and I non-leaves for all values of L and I. Let ti(L, I) denote the number of
such subtrees in Ti, for i = 1, 2, and note that 0 ≤ I ≤ 4.
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(1) I=0: Subtrees with no internal edges are stars, and the number of such
subtrees is completely determined by the degree sequence. But T1 and T2
have the same degree sequences, so t1(L, 0) = t2(L, 0) for all L ≥ 0.

(2) I=1: Such a subtree T1 or T2 uses exactly one of the non-leaf edges in T1
and T2. Then there is a bijection between the 4 non-leaf edges of T1 and
those of T2 so that the number of subtrees having L leaves using an edge
in T1 is the same as the number using the corresponding edge in T2. One
bijection is: a ↔ c′, b ↔ d′, c ↔ a′, d ↔ b′. Thus t1(L, 1) = t2(L, 1) for all
L ≥ 0.

(3) I=2: We apply Lemma 2.5. After simplifying, we have (for i = 1, 2)

ti(L, 2) = 2

(
2α+ 2β − 1

L

)
+

(
α− 1

L

)
+

(
β − 1

L

)
−
(

2α+ β − 1

L

)
−
(
α+ 2β − 1

L

)
−
(
α+ β − 1

L

)
.

(4) I=3: We use the lemma again. This time, we have (for i = 1, 2)

ti(L, 3) =

(
3α+ 2β − 2

L

)
+

(
2α+ 3β − 2

L

)
−3

(
2α+ 2β − 2

L

)
+

(
α+ β − 2

L

)
.

(5) I=4: Note that all four internal edges of T1 and T2 are needed. Then for
i = 1, 2

ti(L, 4) =

(
3α+ 3β − 3

L

)
−
(

3α+ 2β − 3

L

)
−
(

2α+ 3β − 3

L

)
+

(
2α+ 2β − 3

L

)
.

�

Since T1(α, β) and T2(α, β) are not isomorphic for any positive integers α 6= β,
we have the following:

Corollary 2.7. Let α 6= β be positive integers. Then T1(α, β) and T2(α, β) are
non-isomorphic trees with the same greedoid Tutte polynomial.

In [5], non-isomorphic caterpillars with the same degree sequence and the same
number of paths of length k for all k are constructed. This amounts to creating
two trees in which t1(L, 0) = t2(L, 0) for all L ≥ 0 and t1(2, I) = t2(2, I) for all
I ≥ 0. Generating functions play a central role in generating those examples: If T
is a caterpillar with spine vertices {v1, . . . , vr}, let D(T ) =

∑r
i=1 x

ei , where ei+1 =
deg(vi). Then the polynomial xrD(T ;x)D(T ;x−1) encodes the degree sequence and
the number of paths of length k for any k (Lemma 2 of [5]).

For our example, we find D(T1(α, β)) = (α+βx)(1+x2+x3), and D(T2(α, β)) =
(α + βx)(1 + x + x3). Thus, xrD(T1;x)D(T1;x−1) = xrD(T2;x)D(T2;x−1), so T1
and T2 have the same degree sequence and the same number of paths of any length.

Further, we could create additional counterexamples by modifying one of the
factors in this expression. The reader can check that the following generating
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polynomials also produce non-isomorphic caterpillars with the same greedoid Tutte
polynomial:

D(T1(α, β)) D(T2(α, β))
(α+ βx)(1 + x2 + x3) (α+ βx)(1 + x+ x3)

(α+ βx)(1 + x2 + x3 + x4) (α+ βx)(1 + x+ x2 + x4)
(α+ βx)(1 + x2 + x4 + x5) (α+ βx)(1 + x+ x3 + x5)

(α+ βx)(1 + x2 + x3 + x4 + x5) (α+ βx)(1 + x+ x2 + x3 + x5)
(α+ βx)(1 + x+ x3 + x4 + x5) (α+ βx)(1 + x+ x2 + x4 + x5)

Table 1

In general, let p(x) be a polynomial with coefficients drawn from {0, 1} whose
coefficient list does not have 2 consecutive 0’s. We conclude with a conjecture that
such polynomials will always generate caterpillars with identical subtree data.

Conjecture 2.8. Let T1 and T2 be caterpillars with D(T1) = (α + βx)p(x) and
D(T2) = (β + αx)p(x). Then T1 and T2 have the same greedoid Tutte polynomial.
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