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ABSTRACT. For a rooted graph G, let EV;(G;p) be the expected number of
vertices reachable from the root when each edge has an independent probability
p of operating successfully. We determine the expected value of EV,(G;p) for
random trees, and include a connection to unrooted trees. We also consider
rooted digraphs, computing the expected value of a random orientation of a
rooted graph G in terms of EV,(G;p). We consider optimal location of the
root vertex for the class of grid graphs, and we also briefly discuss a polynomial
that incorporates vertex failure.

1. INTRODUCTION

We continue the study of the expected number of vertices that remain connected
to a distinguished vertex (the root) in a rooted graph. When each edge of a rooted
graph has an independent probability p of succeeding, we let EV,(G;p) be the
polynomial in p that gives the expected size of the component containing the root
(the subscript b denotes branching rank). More motivation can be found in [4] and
[8], which can be thought of as logical prequels to this work.

When T is a rooted tree, EV;(T; p) has an especially simple form [1]: EV,(T;p) =
Z*ivevpd(*”’), where d(*,v) is the distance from the root vertex * to v. In this
case, it is clear that the ‘best’ configuration is a rooted star (rooted at the central
vertex) and the ‘worst’ configuration is a rooted path (rooted at a leaf). In the
former case, EV,(T;p) = np, and in the latter, we have EV,(T;p) = Y.i_, p’,
where n is the number of edges.

These extreme cases lead naturally to the question of what is the ‘typical’ value of
EVy(T; p). More precisely, what is the expected number of vertices reachable from
the root in a random rooted tree on n vertices? Answering this question occupies
Section 2, where we compute an explicit formula for this expected value — essentially
an average of averages. These formulas can be evaluated for specified values of p
between 0 and 1, but when no information about the distribution of the random
variable p is known, a Bayesian approach using fol EV,(G;p)dp as a measure of the
expected number of vertices (as a function of n) can be useful. Theorem 2.8 com-

putes this integral for a random rooted tree with n edges: fol EVy(T;p)dp =~ a

value between the extremes achieved by rooted stars (where fol EVy(T;p)dp =n/2)
and rooted paths (where fol EVy(G;p)dp = logn). Theorem 2.10 gives an interpre-
tation analogous to Theorem 2.6 for a rooted tree polynomial EV,(T’;p) based on
a pruning rank function.

Key words and phrases. Expected rank, Probabilistic graph.
This work was supported by NSF grant DMS-0243763.

1



DAVID EISENSTAT, JENNIFER FEDER, GREG FRANCOS, GARY GORDON, AND AMANDA REDLICH

When T is an unrooted tree, we can define an expected rank polynomial EV,,,.(T; p)
via a pruning rank function. This allows us to compute the average number of edges
that can be pruned from a random tree, and we also give a connection between the
rooted and unrooted pruning expected rank polynomials.

Rooted directed graphs are treated briefly in Section 3. When an undirected
graph is randomly oriented, we expect the number of vertices reachable from the
root to drop, on average. Corollary 3.2 gives an explicit formula: The expected value
of EVy(D;p) is EV4(G;p/2), where D is a digraph obtained from the undirected
graph G by randomly orienting the edges of G.

For specific classes of graphs, it can be difficult to decide on an optimal location
for the root. In general, no such location exists that is optimal for all p. It is
possible to construct a graph G in which each of k specified vertices is the optimal
location for the root for some value of p between 0 and 1 [10]. Nevertheless, for
certain classes of graphs, there is a unique vertex v (up to automorphisms of the
graph) in which EV4(Gy;p) > EVy(Gy;p) for all 0 < p < 1 and all vertices w. In
Section 4, we consider grids, where the ‘obvious’ choice for the root is optimal.

Section 5 considers a different question: what happens when the edges are re-
liable, but the vertices are not? We obtain explicit formulas for the polynomial
EV,(G;p) similar to those in the edge failure case, and in some cases, we obtain
much simpler formulas. However, most of the results we present are negative in the
sense that they reveal less about the structure of the graph than the edge-failure
version of the polynomial. In particular, it does not matter if two edges that are
adjacent to the root vertex are joined by an edge. Thus, for instance, the rooted
star (rooted at the center) has the same polynomial as a rooted complete graph.

We thank the anonymous referees for several useful suggestions that helped clar-
ify the exposition.

2. RANDOM TREES

We begin with some preliminary definitions and results. Let G be a connected
rooted graph with edge set E where each edge has the same independent probability
p of being operational. For S C E, let r,(S) be the number of vertices (besides
the root) in the component of the subgraph S that contains the root. This rank
function is the branching rank of the associated greedoid, but we will not need the
generality of greedoids in this paper.

Definition 2.1. Let G be a rooted graph. The expected value EV,(G;p) is
EVy(Gip) = Y ro(S)p/(1 = p)!#50,
SCE

We give two reformulations of this polynomial, both of which will be important
throughout this work. For a vertex v € V, let Pr(v) denote the probability that
v remains connected to the root. The following result appears explicitly in [4] and
implicitly in [7] and [2, 3].

Proposition 2.2 (Proposition 2.7 of [4]). Let G be a rooted graph. Then
EVy(Gip) = Y Pr(v).
*#veV

We will also need the following deletion-contraction expansion for the polyno-
mial.
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Proposition 2.3 (Deletion-Contraction: Proposition 2.3 of [4]). Let G be a rooted
graph and let e (# loop) be an edge adjacent to the root. Then

EVy(G;p) = (1 —p) - EVy(G = e;p) +p- EVy(G/e;p) + p.

Now we shift our attention to rooted trees. In many applications, it is important
to visit each vertex of a rooted tree in a specified order. We will use preorder
labelings of rooted trees here.

Definition 2.4. A rooted tree T with labels 1,...,n is preorder-labeled if the root
is labeled 1 and every other vertex has a label greater than its parent’s.

These labelings are exactly those that arise from a preorder traversal of T. This
gives a simple recursive structure as follows: to generate a random preorder-labeled
tree on n vertices, generate one on n — 1 vertices and then add a new leaf vertex
with a randomly chosen parent.

We will consider two separate expected rank polynomials for rooted trees - one
based on the rank function 7, given above (the branching rank) and one based on
a complementary rank function (the pruning rank r,).

2.1. Branching rank. When T is a rooted tree, the polynomial EV,(T;p) has an
especially simple form. We restate this result, which we will use throughout this
section.

Proposition 2.5 (Corollary 2.6 of [1]). Let T be a rooted tree. Then

EVy(T;p)= Y p"*".
*#veEV

What is the expected rank polynomial for a random rooted tree? We answer
this question by computing an ‘average of averages.” We let B,,(p) be the expected
value of 1 4+ EV,(T'; p) when T has n vertices.

Theorem 2.6. Let T be a random preorder-labeled rooted tree with n vertices,
including the root. Then the expected value of EVy(T;p) is given by Bn(p) — 1 =

—1+TI0Z (1 + p/k).

Proof. Clearly, B1(p) = 1. By Proposition 2.5, given a tree T, 1 + EV,(T;p) =
1+n1p+nop?+... can be viewed as a generating function where ny, is the number
of vertices at depth k. In this light, each coefficient ny in B, (p) is the expected
number of vertices at depth k.

When n > 1, T is determined by two independent choices: the preorder-labeled
rooted subtree of size n—1 and the parent of vertex n. Thus B, (p) = Bn—1(p)+f(p)
where f(p) is the generating function for the distribution of the depths of vertex n.
Since the depth of n is the depth of its parent plus one, the distribution of depths
of n is exactly that of vertices 1,...,n — 1 shifted and rescaled. Multiplying by p
accomplishes the shift; going from n — 1 vertices to 1 requires division by n —1. As

a result, f(p) = pBn-1(p)/(n —1).
This yields the recurrence:

anl (p)

Bi(p) =1 B,(p) = Bn-1(p) +p —



DAVID EISENSTAT, JENNIFER FEDER, GREG FRANCOS, GARY GORDON, AND AMANDA REDLICH

Dividing both sides of the righthand equation by B,,_1(p) yields

Bn(p) =1+ p
B.-1(p) n—1

from which it is easily seen that B,(p) = —1 + Hz;ll(l +p/k).

d

Note that [[;Z; (1 + p/k) = [IpZ) (p + k)/k, so Bu(p) = (",117) = ("")*),
where the domain of the binomial coefficient has been extended via the gamma

function.

Example 2.7. We illustrate Theorem 2.6 when n = 4. In this case, there are 6
labeled trees, as seen in Figure 1. These trees fall into 4 isomorphism classes. These
trees have the following expected value polynomials, where k = 2,3 or 4:

(1) EVy(Ty;p) = p+p*+p°
(2) EVy(Ti;p) = 2p+p°
(3) EVy(Ts;p) = p+2p°
(4) EVy(Te;p) = 3p

This gives an expected value of (11p + 6p* + p®) /6 = (1+p) (1 + §) (14 &) -1,
as required.

1 * * * *
1 1 1 1 -
2 1
2 : 3 2 ~/I\~
3 4 3 2 2 4
3 4 4 3 4 3
4
T T Ts Ta Ts Te

FiGURE 1. The 6 pre-ordered labeled trees on 4 vertices.

When no prior knowledge of the value of p is given, we can estimate the ex-
pected number of vertices which remain connected to the root with an integral:
fol EV,(T;p)dp. This Bayesian approach is introduced in [1], and provides a sim-
ple invariant for comparing different rooted trees. For a rooted tree on n vertices,
H, < fol EVy(T;p)dp < n/2, where H, is the n'" harmonic number, and these
bounds are sharp: The lower bound is achieved by a rooted path and the upper
bound is achieved by a rooted star (Proposition 4.2 of [1]).

Section 5.3 of [1] asks for the expected value of fol EVy(T;p)dp when T is a
random tree. We answer this question now.

Theorem 2.8. For fixed p, let B, (p) be the expected value of 1 + EVy(T;p). Then
1
Bn(p) = ©(nP) and fo B,(p)dp = ©(n/logn).
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Proof. From the previous theorem, we have B, (p) = Z;ll (1 + p/k). Taking the
logarithm of both sides, this becomes

log B, = Zlog(l + %)

We bound log B,, with Taylor expansions and simplify:

nil[i (p//f)}q B <Zp

k=1
n—1 p2 n—1 1 n—1 1
k=1 k=1 k=1
p2 n—1 1
= pH,1— 5 72 <log B, < pH,_1

where H,, = Y_;_, 1 is the n'" harmonic number.

Now, since Zz;ll 1/k* = O(1) and logn < H,, <logn+1, there exists a constant
¢ independent of n such that

—c+ plog(n —1) <log B, (p) < c+ plog(n—1)
Exponentiating yields
e “(n—1)? < Bp(p) <ef(n—1)P

and B, (p) = O(n?). Finally, integrating gives fo p)dp = O(n/logn).
(I

2.2. Pruning rank. The definition of EV;(T;p) depends on the branching rank
function 7. In this section, we use the pruning rank function 7, to define a new
expected rank polynomial EV,(T';p) for rooted trees. Let T' be a rooted tree with
edge-set E and let S C E. Then define the pruning rank r,(S) by

rp(S) = I}g}S({|A| : E — A is a rooted subtree}.

Equivalently, we can compute the pruning rank 7,(S) by successively removing
leaf-edges from S, keeping in mind that edges of S which are not leaves of T" may
become leaves during this process, and using the convention that the root is never
considered a leaf.

We denote the polynomial derived from this pruning rank by EV,(T;p). For
e € F incident to a vertex v, let c.(v) be the number of vertices in the component
of T'— e that contains v. The next result is analogous to Proposition 2.5. The proof
follows from Proposition 3.1 of [9], which uses linearity of expected value to express
the polynomial as a sum over F.

Proposition 2.9. Let T be a rooted tree, and let vertices u and v be incident to
the edge e with v further from the root than uw. Then

EV,(T; p) che(u)
eeE
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What is the expected value polynomial of a random rooted tree in this context?
The next theorem, which is analogous to Theorem 2.6, computes this as another
average of averages. We let P,(p) denote the expected value of EV,(T;p), where
T ranges over all rooted trees on n vertices.

Theorem 2.10. Let T be a random preorder-labeled tree with n vertices. Then the
expected value of EV,(T;p) is P,(p) = Z;ll %pk.

Proof. We again interpret EV,(T;p) = nip + nap? + ... as a generating function.
Here, ny, is the number of vertices other than the root with k (improper) descen-
dants, since we can identify each edge with the lower of its endpoints and think of
pruning vertices (this follows from Proposition 2.9).

Now write P, (p) = an1p+ an72p2 + ... Then the coeflicient a,, j is the expected
number of vertices with £ descendants. In order to compute a,, 1, we develop and
solve a binomial-like recurrence.

We first find a formula for a,, 1, the expected number of leaves. When adding a
new vertex to a tree with n — 1 vertices, each leaf in the subtree will cease to be
a leaf with probability 1/(n — 1); the new vertex will always be a leaf. This yields
the following recurrence:

1
ain =1 an1:<1— >Gn11+1
9 9 n _ 1 )
Multiplying through by n — 1 yields:
0a11 =0 (n—1anp1=m—2)ap—11+(n—1)

Hence (n — 1)an,1 = n(n —1)/2; thus, for all n > 1, a,1 =n/2

We next compute a,, ,—1 for n > 1. Only vertex 2 can have n — 1 descendants,
and it has this property exactly when the root, vertex 1, has only one child. Thus
Gn n—1 is the probability that vertex 2 is the only vertex with 1 as its parent. In
adding a vertex to an (n — 1)-vertex tree, the root will be chosen as a parent with
probability 1/(n — 1), so

1
az1 =1 Opp—1 = (1 - > Ap—1,n—2
n—1

This gives apn—1 = 1/(n —1).

Finally, when n —1 > k > 1, we can obtain a formula for a, j as follows. In
adding a vertex to an (n—1)-vertex preorder-labeled tree, the existing vertices with
k descendants will continue to have k descendants with probability 1 — k/(n — 1).
The existing vertices with k& — 1 descendants will gain another descendant with
probability (k —1)/(n —1). Thus, a,  satisfies the following formulas:

1
n—1

n
an,1 = 5 Qn,n—1 =

k k—1
1- Ap_1k + Gn—1,k—1
n—1 n—1

An k

It is not hard to verify that the solution is ay j = ﬁ
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2.3. Unrooted trees. When T is an unrooted tree, it is possible to define a rank
function on subsets of edges of T based on edge pruning. This rank function
endows the tree with an antimatroid structure; see [9] for a study of the expected
rank polynomial in this context.

Let T be an unrooted tree. Then we define the expected rank polynomial
EV,.(T;p) as before:

EVir(Tip) = Y mp(S)p¥l(1 = p) #=5,
SCE
where 7,(S) = maxacg{|A| : E — A is a subtree}.
We will also need the following result, which is similar to Proposition 2.9. For an
edge e of the unrooted tree T that is incident to vertex v, recall that c.(v) equals
the number of vertices in the component of T'— e containing the vertex v.

Proposition 2.11 (Corollary 3.6 of [1]). Let T be an unrooted tree with edges
E(T), where |E(T)| = n, and assume the edge e is incident to the vertices u and
v. Then
EVir(Tip) = > (poe 4 poe®) = p)
ecE(T)

If T has n edges, then we have extreme values for EV,,.(T;p) of np when T is a
star, and 2p+2p% +---+2p" ! — (n — 2)p"™ when T is a path. As with the pruning
rooted case, let P,(p) be the expected value of EV,,,.(T;p) when T has n vertices.

Proposition 2.12. When p > 0 is fized, P,(p) = ©(n).

Proof. Note that the formula for P, (p) from Theorem 2.10 provides a lower bound
for P,(p) in this context, since the pruning rank of any subset S C F in a rooted
tree can only increase when the root is ignored and we consider the pruning rank
of the corresponding unrooted tree. Thus, P,(p) is bounded below by (n/2)p, and
(trivially) above by n — 1.

O

An interpretation for this result is that, for a fixed value of p, we expect to be
able to prune a positive fraction of the edges from a random tree, independent of
the size of the tree. The fraction depends only on the probability p of edge success.

The close relation between the pruning rank functions for rooted and unrooted
trees explains the similarity between the formulas of Propositions 2.9 and 2.11. We
exploit that connection in the next proposition. For a given (unrooted) tree T, let
f(T;p) be the expected value of the rooted pruning polynomial EV,(T’;p), where
this average is computed over the collection of all rooted trees obtained from 71" by
placing the root at each vertex of T', in turn.

Proposition 2.13. Let T be a tree with n edges. Then
EVir(T;p) = f(T;p) + " f(T5p7 ") — np™.

Proof. Let e be an edge of the unrooted tree T'. By Proposition 2.11, e contributes
pe(®) 4 poe() — p" to EVyp (T p).

By Proposition 2.9, for a rooted tree obtained from T by placing the root at
some vertex of T, e will contribute p® () or pc(®) to EV,(T;p), resp., depending
on whether the root is closer to v or u, resp. Thus, the edge e contributes the
term (c.(u)p®™ + c.(v)p®™) /(n + 1) to f(T;p). Since cc(u) + c.(v) = n + 1
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for any edge e, we also get a contribution of (c.(u)p®™ + c.(v)p®™) /(n + 1) to
P (TspY).

Thus, the total contribution an edge e makes to the RHS of the formula is
pCe(®) 4 pce(¥) - Subtracting np" and comparing the results with Propositions 2.9
and 2.11 completes the proof.

a

As an example of Proposition 2.13, let T' be the unrooted tree of Figure 2. Let
T; (for 1 < i < 5) denote the rooted tree obtained from T by placing the root at
vertex i. Then EV,,.(T;p) = 3p + p* + p* — p*, and

Vo(Tisp) = EVp(Taip) =2p+p* +p'
Vo(Tsip) = 3p+p°

Vo(Tu;p) = 3p+p°
EV,(Ts;ip) = 2p+p°+p'

The reader can check that (Zl VEVy(Tip) + 97 S0 EVy(Ti;p~ )) /5—4p* =
3p+p?+p° —p' = EVir(T1p).

FIGURE 2. Tree for Proposition 2.13.

3. ROOTED DIGRAPHS

When D is a rooted directed graph, we can define an expected rank polynomial
based on branching rank in the digraph D. EV4(D;p) still gives the expected
number of vertices reachable from the root, where directions of edges must be
respected.

If D is a rooted digraph obtained from a rooted graph by orienting the edges
of G in some manner, then it is clear that EV,(D;p) < EV,(G;p) for all p (since
any orientation can only decrease the probability that a given vertex is reachable).
In this section, we answer the question of how much this expectation drops, on
average.

We begin with a result that essentially allows edges of a rooted graph to fail in
two stages.

Proposition 3.1. Let G be a rooted graph and G’ be a random graph derived from
G by deleting edges with probability 1 — p’. Then EV4(G';p) = EV4(G;pp').

Proof. Let m be the number of edges in G. We induct on m. The case where
m = 0 is immediate. The case m > 0 and G has no edges incident to the root is
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also immediate. Otherwise, let e be an edge incident to the root. With probability
1—9p/, e has been deleted in G’ and EV,(G';p) = EVi(G — e; pp’). If e hasn’t been
deleted, we have

EVy(G'ip) = (1 + EV4(G'/esp))p + (1 = p) EV3(G' — e5p)
= (1+ EVy(G/e;pp))p + (1 — p) EV,(G — e; pp’)
where the final step follows by the induction hypothesis. Putting it all together,
EVy(G'sp) = p'lp(1+ EVi(G/espp')) + (1 — p) EVi(G — e5pp')]
+ (1 =p)EVy(G — e;pp')
=pp'(1+ EVy(G/e;pp')) + (1 — pp) EVy (G — €;pp')
= EVy(G;pp')

which is the desired result.
O

As an alternative to the inductive proof given, note that independence guarantees
that each edge succeeds with probability pp’. The proposition then follows immedi-
ately. The inductive proof illustrates the utility of deletion-contraction arguments,
however.

The next result concludes our treatment of randomness. We compute the average
expected rank polynomial of a rooted directed graph obtained from a fixed rooted
graph, averaged over all orientations of G.

Corollary 3.2. Let D be a rooted digraph obtained from a rooted graph by ran-
domly orienting the edges of G. Then the expected value of EVy(D;p) is given by
EVy(G;p/2).

Proof. By Proposition 2.2, we can express EV,(G;p) and EV,(D;p) using paths
joining the root to a given vertex v. In G, suppose an edge e is used along the
operational path joining * to v. Then, on average, the same path will also use the
edge e in a directed path joining * to v in D with probability 1/2, since e will be
oriented ‘correctly’ along the path with that probability. Now applying Proposition
3.1 with p’ = 1/2 gives the result. O

For example, let G be the rooted cycle Cs. Then EV;(G;p) = 2p + 2p* — 2p>.
Now there are 8 orientations of C'3 which fall into 4 isomorphism classes, pictured
in Figure 3. Then EVy(Dy;p) = 2p + p* — p*, EVy(Da;p) = p+ p*, EVy(Ds;p) = p
and EVj(Dy4;p) = 0. Each digraph orientation of Cj is represented by one of these
D; (for 1 < i < 4), and each D; corresponds to two orientations of G. Thus, the
expected value of a random orientation of G is 2(2p+p? —p®> +p+p?> +p+0)/8 =
p+p?/2 —p3/4 = EV4(G;p/2), which agrees with Corollary 3.2.

4. GRIDS

In this section, we concentrate on the optimal vertex location for grids. As
usual, we assume that each edge of the rooted graph succeeds independently with
probability p. Rooted trees are considered in [4] and [5]; the optimal location for
the root generally depends on the value of p. In fact, the optimal location can
switch arbitrarily often in general — see [10] and [8]. For certain graphs, however,
the optimal location is independent of p. In particular, for grids, we can show that
the ‘obvious’ locations for the root are indeed optimal for all values of p.



DAVID EISENSTAT, JENNIFER FEDER, GREG FRANCOS, GARY GORDON, AND AMANDA REDLICH

D D, Ds Dy

FI1GURE 3. The possible orientations of Cj.

A grid graph G,, ,, is the graph whose vertices are ordered pairs of integers (a, b),
where 1 <a <m and 1 < b < n, with edges joining (a, b) to (a+1,b) and (a,b+ 1)
(provided a + 1 and b + 1 are in the valid range). Grids are important in many
applications, especially because of the way many cities are designed. Determining
the Tutte polynomial of a grid using deletion-contraction is examined in [11]; the
authors develop a complicated recursion, which they do not solve explicitly.

Our goal is more modest; we wish to prove the optimal location for the root
(from the viewpoint of the expected value polynomial) is a central vertex in the
grid, i.e., a vertex of minimum eccentricity. This is ‘obvious,” but the proof relies
on a few lemmas.

Let P and @ be horizontally adjacent vertices of the grid Gy, . We partition
the edges of G,y into two parts; a grid A = G, 4 that is symmetric with respect
to vertices P and @, and B = G,y — Gy a-

[ - il il ~ .
L PI QI . &
L . . . &
Z
> % . . &
X Y
L . . . &
L > . .- .

FIGURE 4. The grid G5 ¢ with edges in A in bold.

Let X and Y be vertices of A which are symmetric with respect to the reflection
that interchanges P and ) in A, and let Z be any vertex in the grid G, , which is
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not incident to any edge of A (see Fig. 4). Then any path joining the vertices P and
Z in Gy, » must pass through the vertical line containing (). This observation gives
the next lemma. We write Pr(X,Y") for the probability that there is an operational
path joining vertices X and Y in the probabilistic graph G.

Lemma 4.1. Suppose P and @ are adjacent in a grid G, n, with Q more central
than P. Let A and B be the partition of the edges of Gy, as above, and let
Z be any vertex in the grid G, , which is not incident to any edge of A. Then
Pr(P,Z) < Pr(Q, Z).

The next lemma considers the probability of reaching vertices in A from our two
roots P and Q.

Lemma 4.2. Suppose P and Q are adjacent in a grid Gy, n, with Q more central
than P. Let A and B be the partition of the edges of G, », as above, and let X andY
be vertices of A which are symmetric with respect to the reflection that interchanges
P and Q in A. Then Pr(P,X)+ Pr(P,Y) < Pr(Q,X) + Pr(Q,Y).

Proof. Let Pra(C, D) denote the probability that vertices C' and D can commu-
nicate using only edges of A, and let Prg(C, D) be the probability that C' and D
communicate using some edges of B. Then Pr(C, D) = Pra(C,D)+ Prg(C, D).

Thus Pr(Q,X)+ Pr(Q,Y)—Pr(P,X)—Pr(P,Y) = Pra(Q,X)+ Pra(Q,Y) —
Pra(P,X)—Pra(P,Y)+Prp(Q,X)+Prp(Q,Y)—Prg(P,X)—Prp(P,Y). Now,
by symmetry, we have Pr4 (P, X) = Pr(Q,Y) and Pra(P,Y) = Pr,(Q, X). This
gives Pr(Q,X) + Pr(Q,Y) — Pr(P,X)— Pr(P,Y) = Prg(Q,X) + Prp(Q,Y) —
Prs(P,X) — Pra(PY).

It remains to show Prp(Q, X) > Prg(P,X) and Prp(Q,Y) > Prg(P,Y) for all
values of p between 0 and 1. Now any successful path joining vertices P and X which
uses edges of B must reach a vertex Z not incident to any edge of A. By Lemma
4.1, Pr(P,Z) < Pr(Q,Z) for all 0 < p < 1. Since any path can be decomposed
into that portion reaching such a vertex Z and the remainder of the path, we have
Prp(Q,X) > Prp(P,X). The same argument also shows Prg(Q,Y) > Prg(P,Y),
and this completes the proof.

O

The proof of the next lemma follows immediately from Proposition 2.2 and Lem-
mas 4.1 and 4.2. We write EVx (G,,n;p) for the expected value polynomial when
the grid is rooted at the vertex X. (We also write EV instead of EV}, throughout
this section — all of the calculations use branching rank.)

Lemma 4.3. Let P and Q be adjacent vertices in Gy, n, with Q more central than
P. Then EVp(Gun;p) < EVo(Gmn;p) for all0 <p < 1.

We can now use Lemma 4.3 repeatedly to prove our main result on grids. Note
that Gy, ,, may have a unique central vertex (if both m and n are odd), two central
vertices (if precisely one of m and n is odd) or four central vertices (if both m and
n are even).

Proposition 4.4. Let G, be a grid with central vertex @ and non-central vertex
P. Then EVp(Gmn;p) < EVQ(Grn;p) for all 0 < p < 1.

It should be possible to extend this argument to higher dimensional grid graphs;
in particular, we again can partition the edges into a symmetric piece A and the



IAVID EISENSTAT, JENNIFER FEDER, GREG FRANCOS, GARY GORDON, AND AMANDA REDLICH

rest of the edges B. Then lemmas analogous to 4.1, 4.2 and 4.3 should remain valid.
We leave consideration of higher dimensions to the interested reader.

5. VERTEX FAILURE

The standard assumptions of reliability theory focus on edge failure. There are
theoretical and practical reasons for this [6], but it is possible to incorporate vertex
failure into our model of reliability. We present a brief overview here; many formulas
are quite similar to the edge failure formulas developed in previous sections, and
some formulas are much easier (e.g., complete graphs).

In this section, we assume edges are perfectly reliable, but the failure of a vertex
means that no path from the root can pass successfully through that vertex. We
also make the usual assumption about independence of vertex failure. (We assume
the root vertex is always operational; if the root were allowed to fail, we could easily
adjust all of the formulas that follow.)

To obtain a polynomial invariant for rooted graphs that is sensitive to vertex
failure, we modify Definition 2.1. As in the case of edge failure, we use branching
rank.

Definition 5.1. Let G be a rooted graph with root vertex * and let V* = V(G) —
{*} denote the rest of the vertices. Suppose that each v € V* has an independent
probability p of being operational. Then define

EV,(Gip) = Y r(S)p (1 —p)V 1715
SCv+

where 75(S5) is the number of vertices in the same component as the root in the
induced subgraph on S.

Linearity of expectation can be applied to indicator functions to give an expan-
sion analogous to the one given in Proposition 2.2.

Proposition 5.2. Let G be a rooted graph and let Pr,(v) be the probability that
the root x and v remain in the same component of G. Then

EV,(G;p) = Y Pry(v).
veV*

An immediate consequence of Proposition 5.2 is the following: If a rooted graph
has n vertices and the root is adjacent to every vertex in G, then EV,(G;p) =
(n—1)p.

The next result is analogous to Proposition 2.3. We omit the straightforward
proof.

Proposition 5.3. Let G be a rooted graph with root vertex * and let e be an edge
with endpoints x and v. Then

EV,(G;p) = (1 —p)  EVy,(G —v;p) +p- EV,(G/e;p) +p.

In each of the terms on the right-hand side of the deletion-contraction recursion,
the number of vertices is reduced by 1. Note that if G/e has multiple edges, we
can replace it with a simple graph since the edges are assumed to be perfectly
reliable. Thus, for example, if G = K, is a complete graph, we can replace K, /e
by K,—1. Then Proposition 5.3 can be applied to give inductive proofs of the
following formulas.
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Proposition 5.4. Let T be a rooted tree with n edges, C, a rooted n-cycle, and
K, a rooted complete graph on n vertices (including the root). Then

(1) BVo(Ts5p) = Xpey- p"Y,

(2) BV,(Coip) =23 p—ip" — (n—3)p" 1,
(3> EVU(Kn;p) = (n - 1)])-

Note that the formulas for rooted trees and cycles are virtually identical to the
edge failure case. The formula for the complete graph is much simpler, though (see
[2, 3]). Note that the formula for complete graphs follows immediately from the
remark following Proposition 5.2.

Proposition 5.4 can be extended to give an explicit formula for complete muti-
partite graphs.

Corollary 5.5. Let K, n, be a multipartite graph with vertex partition uk_ v,
where |V;| = n; for all 1 < ¢ < k. Suppose the root vertexr x € Vi, and write
N = Zle n;. Then

EVu(Knl,...,nk) = (N — nl)p+ (nl — 1) (]_ _ (1 7p)N7n1) )

Proof. If v ¢ Vi, then v is adjacent to *, so Pr,(v) = p. If v € V1, then v will
be connected to * provided one of the vertices adjacent to * is operational. The

formula follows.
O

Note that the formula from Corollary 5.5 reduces to (n — 1)p when ny =1, i.e.,
when * is adjacent to every other vertex.

We conclude with a combinatorial result. The derivative of EV,(G;p) encodes
information about the graph (although not as much as the edge-failure polynomial
- see [10] or [8]).

Proposition 5.6. If G is 2-connected, then EV,(G;1) =|V| —1.

The proof of this proposition follows from differentiating the deletion-contraction
formula of Proposition 5.3 and using induction. We leave the details to the reader.

As an example, from Proposition 5.4, we have EV,(K,;p) = (n — 1)p, so
EV,(K,;1) = n — 1. For rooted cycles, we get EV,(Cp;1) = 2(1+2+ --- +
(n—2)) — (n—1)(n — 3) = n — 1. The necessity of the 2-connectedness condition
can be seen, for example, by considering a rooted path, where the result is false.
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