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Abstract. For a rooted graph G, let EVb(G; p) be the expected number of

vertices reachable from the root when each edge has an independent probability
p of operating successfully. We determine the expected value of EVb(G; p) for

random trees, and include a connection to unrooted trees. We also consider

rooted digraphs, computing the expected value of a random orientation of a
rooted graph G in terms of EVb(G; p). We consider optimal location of the

root vertex for the class of grid graphs, and we also briefly discuss a polynomial

that incorporates vertex failure.

1. Introduction

We continue the study of the expected number of vertices that remain connected
to a distinguished vertex (the root) in a rooted graph. When each edge of a rooted
graph has an independent probability p of succeeding, we let EVb(G; p) be the
polynomial in p that gives the expected size of the component containing the root
(the subscript b denotes branching rank). More motivation can be found in [4] and
[8], which can be thought of as logical prequels to this work.

When T is a rooted tree, EVb(T ; p) has an especially simple form [1]: EVb(T ; p) =∑
∗6=v∈V pd(∗,v), where d(∗, v) is the distance from the root vertex ∗ to v. In this

case, it is clear that the ‘best’ configuration is a rooted star (rooted at the central
vertex) and the ‘worst’ configuration is a rooted path (rooted at a leaf). In the
former case, EVb(T ; p) = np, and in the latter, we have EVb(T ; p) =

∑n
i=1 p

i,
where n is the number of edges.

These extreme cases lead naturally to the question of what is the ‘typical’ value of
EVb(T ; p). More precisely, what is the expected number of vertices reachable from
the root in a random rooted tree on n vertices? Answering this question occupies
Section 2, where we compute an explicit formula for this expected value – essentially
an average of averages. These formulas can be evaluated for specified values of p
between 0 and 1, but when no information about the distribution of the random

variable p is known, a Bayesian approach using
∫ 1

0
EVb(G; p)dp as a measure of the

expected number of vertices (as a function of n) can be useful. Theorem 2.8 com-

putes this integral for a random rooted tree with n edges:
∫ 1

0
EVb(T ; p)dp ≈ n

logn , a

value between the extremes achieved by rooted stars (where
∫ 1

0
EVb(T ; p)dp = n/2)

and rooted paths (where
∫ 1

0
EVb(G; p)dp ≈ log n). Theorem 2.10 gives an interpre-

tation analogous to Theorem 2.6 for a rooted tree polynomial EVp(T ; p) based on
a pruning rank function.
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When T is an unrooted tree, we can define an expected rank polynomial EVur(T ; p)
via a pruning rank function. This allows us to compute the average number of edges
that can be pruned from a random tree, and we also give a connection between the
rooted and unrooted pruning expected rank polynomials.

Rooted directed graphs are treated briefly in Section 3. When an undirected
graph is randomly oriented, we expect the number of vertices reachable from the
root to drop, on average. Corollary 3.2 gives an explicit formula: The expected value
of EVb(D; p) is EVb(G; p/2), where D is a digraph obtained from the undirected
graph G by randomly orienting the edges of G.

For specific classes of graphs, it can be difficult to decide on an optimal location
for the root. In general, no such location exists that is optimal for all p. It is
possible to construct a graph G in which each of k specified vertices is the optimal
location for the root for some value of p between 0 and 1 [10]. Nevertheless, for
certain classes of graphs, there is a unique vertex v (up to automorphisms of the
graph) in which EVb(Gv; p) ≥ EVb(Gw; p) for all 0 ≤ p ≤ 1 and all vertices w. In
Section 4, we consider grids, where the ‘obvious’ choice for the root is optimal.

Section 5 considers a different question: what happens when the edges are re-
liable, but the vertices are not? We obtain explicit formulas for the polynomial
EVv(G; p) similar to those in the edge failure case, and in some cases, we obtain
much simpler formulas. However, most of the results we present are negative in the
sense that they reveal less about the structure of the graph than the edge-failure
version of the polynomial. In particular, it does not matter if two edges that are
adjacent to the root vertex are joined by an edge. Thus, for instance, the rooted
star (rooted at the center) has the same polynomial as a rooted complete graph.

We thank the anonymous referees for several useful suggestions that helped clar-
ify the exposition.

2. Random trees

We begin with some preliminary definitions and results. Let G be a connected
rooted graph with edge set E where each edge has the same independent probability
p of being operational. For S ⊆ E, let rb(S) be the number of vertices (besides
the root) in the component of the subgraph S that contains the root. This rank
function is the branching rank of the associated greedoid, but we will not need the
generality of greedoids in this paper.

Definition 2.1. Let G be a rooted graph. The expected value EVb(G; p) is

EVb(G; p) =
∑
S⊆E

rb(S)p|S|(1− p)|E−S|.

We give two reformulations of this polynomial, both of which will be important
throughout this work. For a vertex v ∈ V , let Pr(v) denote the probability that
v remains connected to the root. The following result appears explicitly in [4] and
implicitly in [7] and [2, 3].

Proposition 2.2 (Proposition 2.7 of [4]). Let G be a rooted graph. Then

EVb(G; p) =
∑
∗6=v∈V

Pr(v).

We will also need the following deletion-contraction expansion for the polyno-
mial.
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Proposition 2.3 (Deletion-Contraction: Proposition 2.3 of [4]). Let G be a rooted
graph and let e ( 6= loop) be an edge adjacent to the root. Then

EVb(G; p) = (1− p) · EVb(G− e; p) + p · EVb(G/e; p) + p.

Now we shift our attention to rooted trees. In many applications, it is important
to visit each vertex of a rooted tree in a specified order. We will use preorder
labelings of rooted trees here.

Definition 2.4. A rooted tree T with labels 1, . . . , n is preorder-labeled if the root
is labeled 1 and every other vertex has a label greater than its parent’s.

These labelings are exactly those that arise from a preorder traversal of T . This
gives a simple recursive structure as follows: to generate a random preorder-labeled
tree on n vertices, generate one on n − 1 vertices and then add a new leaf vertex
with a randomly chosen parent.

We will consider two separate expected rank polynomials for rooted trees - one
based on the rank function rb given above (the branching rank) and one based on
a complementary rank function (the pruning rank rp).

2.1. Branching rank. When T is a rooted tree, the polynomial EVb(T ; p) has an
especially simple form. We restate this result, which we will use throughout this
section.

Proposition 2.5 (Corollary 2.6 of [1]). Let T be a rooted tree. Then

EVb(T ; p) =
∑
∗6=v∈V

pd(∗,v).

What is the expected rank polynomial for a random rooted tree? We answer
this question by computing an ‘average of averages.’ We let Bn(p) be the expected
value of 1 + EVb(T ; p) when T has n vertices.

Theorem 2.6. Let T be a random preorder-labeled rooted tree with n vertices,
including the root. Then the expected value of EVb(T ; p) is given by Bn(p) − 1 =

−1 +
∏n−1

k=1(1 + p/k).

Proof. Clearly, B1(p) = 1. By Proposition 2.5, given a tree T , 1 + EVb(T ; p) =
1 +n1p+n2p

2 + . . . can be viewed as a generating function where nk is the number
of vertices at depth k. In this light, each coefficient nk in Bn(p) is the expected
number of vertices at depth k.

When n > 1, T is determined by two independent choices: the preorder-labeled
rooted subtree of size n−1 and the parent of vertex n. Thus Bn(p) = Bn−1(p)+f(p)
where f(p) is the generating function for the distribution of the depths of vertex n.
Since the depth of n is the depth of its parent plus one, the distribution of depths
of n is exactly that of vertices 1, . . . , n − 1 shifted and rescaled. Multiplying by p
accomplishes the shift; going from n− 1 vertices to 1 requires division by n− 1. As
a result, f(p) = pBn−1(p)/(n− 1).

This yields the recurrence:

B1(p) = 1 Bn(p) = Bn−1(p) + p
Bn−1(p)

n− 1
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Dividing both sides of the righthand equation by Bn−1(p) yields

Bn(p)

Bn−1(p)
= 1 +

p

n− 1

from which it is easily seen that Bn(p) = −1 +
∏n−1

k=1(1 + p/k).
�

Note that
∏n−1

k=1(1 + p/k) =
∏n−1

k=1(p + k)/k, so Bn(p) =
(
n−1+p
n−1

)
=
(
n−1+p

p

)
,

where the domain of the binomial coefficient has been extended via the gamma
function.

Example 2.7. We illustrate Theorem 2.6 when n = 4. In this case, there are 6
labeled trees, as seen in Figure 1. These trees fall into 4 isomorphism classes. These
trees have the following expected value polynomials, where k = 2, 3 or 4:

EVb(T1; p) = p + p2 + p3(1)

EVb(Tk; p) = 2p + p2(2)

EVb(T5; p) = p + 2p2(3)

EVb(T6; p) = 3p(4)

This gives an expected value of
(
11p + 6p2 + p3

)
/6 = (1+p)

(
1 + p

2

) (
1 + p

3

)
−1,

as required.
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Figure 1. The 6 pre-ordered labeled trees on 4 vertices.

When no prior knowledge of the value of p is given, we can estimate the ex-
pected number of vertices which remain connected to the root with an integral:∫ 1

0
EVb(T ; p)dp. This Bayesian approach is introduced in [1], and provides a sim-

ple invariant for comparing different rooted trees. For a rooted tree on n vertices,

Hn ≤
∫ 1

0
EVb(T ; p)dp ≤ n/2, where Hn is the nth harmonic number, and these

bounds are sharp: The lower bound is achieved by a rooted path and the upper
bound is achieved by a rooted star (Proposition 4.2 of [1]).

Section 5.3 of [1] asks for the expected value of
∫ 1

0
EVb(T ; p)dp when T is a

random tree. We answer this question now.

Theorem 2.8. For fixed p, let Bn(p) be the expected value of 1 + EVb(T ; p). Then

Bn(p) = Θ(np) and
∫ 1

0
Bn(p)dp = Θ(n/ log n).
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Proof. From the previous theorem, we have Bn(p) =
∏n−1

k=1(1 + p/k). Taking the
logarithm of both sides, this becomes

logBn =

n−1∑
k=1

log(1 +
p

k
)

We bound logBn with Taylor expansions and simplify:

n−1∑
k=1

[
p

k
− (p/k)2

2

]
≤ logBn ≤

n−1∑
k=1

p

k

⇒ p

n−1∑
k=1

1

k
− p2

2

n−1∑
k=1

1

k2
≤ logBn ≤ p

n−1∑
k=1

1

k

⇒ pHn−1 −
p2

2

n−1∑
k=1

1

k2
≤ logBn ≤ pHn−1

where Hn =
∑n

k=1
1
k is the nth harmonic number.

Now, since
∑n−1

k=1 1/k2 = O(1) and log n ≤ Hn ≤ log n+1, there exists a constant
c independent of n such that

−c + p log(n− 1) ≤ logBn(p) ≤ c + p log(n− 1)

Exponentiating yields

e−c(n− 1)p ≤ Bn(p) ≤ ec(n− 1)p

and Bn(p) = Θ(np). Finally, integrating gives
∫ 1

0
Bn(p)dp = Θ(n/ log n).

�

2.2. Pruning rank. The definition of EVb(T ; p) depends on the branching rank
function rb. In this section, we use the pruning rank function rp to define a new
expected rank polynomial EVp(T ; p) for rooted trees. Let T be a rooted tree with
edge-set E and let S ⊆ E. Then define the pruning rank rp(S) by

rp(S) = max
A⊆S
{|A| : E −A is a rooted subtree}.

Equivalently, we can compute the pruning rank rp(S) by successively removing
leaf-edges from S, keeping in mind that edges of S which are not leaves of T may
become leaves during this process, and using the convention that the root is never
considered a leaf.

We denote the polynomial derived from this pruning rank by EVp(T ; p). For
e ∈ E incident to a vertex v, let ce(v) be the number of vertices in the component
of T −e that contains v. The next result is analogous to Proposition 2.5. The proof
follows from Proposition 3.1 of [9], which uses linearity of expected value to express
the polynomial as a sum over E.

Proposition 2.9. Let T be a rooted tree, and let vertices u and v be incident to
the edge e with v further from the root than u. Then

EVp(T ; p) =
∑
e∈E

pce(v).
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What is the expected value polynomial of a random rooted tree in this context?
The next theorem, which is analogous to Theorem 2.6, computes this as another
average of averages. We let Pn(p) denote the expected value of EVp(T ; p), where
T ranges over all rooted trees on n vertices.

Theorem 2.10. Let T be a random preorder-labeled tree with n vertices. Then the
expected value of EVp(T ; p) is Pn(p) =

∑n−1
k=1

n
k(k+1)p

k.

Proof. We again interpret EVp(T ; p) = n1p + n2p
2 + . . . as a generating function.

Here, nk is the number of vertices other than the root with k (improper) descen-
dants, since we can identify each edge with the lower of its endpoints and think of
pruning vertices (this follows from Proposition 2.9).

Now write Pn(p) = an,1p+ an,2p
2 + . . . Then the coefficient an,k is the expected

number of vertices with k descendants. In order to compute an,k, we develop and
solve a binomial-like recurrence.

We first find a formula for an,1, the expected number of leaves. When adding a
new vertex to a tree with n − 1 vertices, each leaf in the subtree will cease to be
a leaf with probability 1/(n− 1); the new vertex will always be a leaf. This yields
the following recurrence:

a1,1 = 1 an,1 =

(
1− 1

n− 1

)
an−1,1 + 1

Multiplying through by n− 1 yields:

0a1,1 = 0 (n− 1)an,1 = (n− 2)an−1,1 + (n− 1)

Hence (n− 1)an,1 = n(n− 1)/2; thus, for all n > 1, an,1 = n/2
We next compute an,n−1 for n > 1. Only vertex 2 can have n− 1 descendants,

and it has this property exactly when the root, vertex 1, has only one child. Thus
an,n−1 is the probability that vertex 2 is the only vertex with 1 as its parent. In
adding a vertex to an (n− 1)-vertex tree, the root will be chosen as a parent with
probability 1/(n− 1), so

a2,1 = 1 an,n−1 =

(
1− 1

n− 1

)
an−1,n−2

This gives an,n−1 = 1/(n− 1).
Finally, when n − 1 > k > 1, we can obtain a formula for an,k as follows. In

adding a vertex to an (n−1)-vertex preorder-labeled tree, the existing vertices with
k descendants will continue to have k descendants with probability 1− k/(n− 1).
The existing vertices with k − 1 descendants will gain another descendant with
probability (k − 1)/(n− 1). Thus, an,k satisfies the following formulas:

an,1 =
n

2
an,n−1 =

1

n− 1

an,k =

(
1− k

n− 1

)
an−1,k +

k − 1

n− 1
an−1,k−1

It is not hard to verify that the solution is an,k = n
k(k+1) .

�
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2.3. Unrooted trees. When T is an unrooted tree, it is possible to define a rank
function on subsets of edges of T based on edge pruning. This rank function
endows the tree with an antimatroid structure; see [9] for a study of the expected
rank polynomial in this context.

Let T be an unrooted tree. Then we define the expected rank polynomial
EVur(T ; p) as before:

EVur(T ; p) =
∑
S⊆E

rp(S)p|S|(1− p)|E−S|,

where rp(S) = maxA⊆S{|A| : E −A is a subtree}.
We will also need the following result, which is similar to Proposition 2.9. For an

edge e of the unrooted tree T that is incident to vertex v, recall that ce(v) equals
the number of vertices in the component of T − e containing the vertex v.

Proposition 2.11 (Corollary 3.6 of [1]). Let T be an unrooted tree with edges
E(T ), where |E(T )| = n, and assume the edge e is incident to the vertices u and
v. Then

EVur(T ; p) =
∑

e∈E(T )

(
pce(u) + pce(v) − pn

)
.

If T has n edges, then we have extreme values for EVur(T ; p) of np when T is a
star, and 2p+ 2p2 + · · ·+ 2pn−1− (n− 2)pn when T is a path. As with the pruning
rooted case, let Pn(p) be the expected value of EVur(T ; p) when T has n vertices.

Proposition 2.12. When p > 0 is fixed, Pn(p) = Θ(n).

Proof. Note that the formula for Pn(p) from Theorem 2.10 provides a lower bound
for Pn(p) in this context, since the pruning rank of any subset S ⊆ E in a rooted
tree can only increase when the root is ignored and we consider the pruning rank
of the corresponding unrooted tree. Thus, Pn(p) is bounded below by (n/2)p, and
(trivially) above by n− 1.

�

An interpretation for this result is that, for a fixed value of p, we expect to be
able to prune a positive fraction of the edges from a random tree, independent of
the size of the tree. The fraction depends only on the probability p of edge success.

The close relation between the pruning rank functions for rooted and unrooted
trees explains the similarity between the formulas of Propositions 2.9 and 2.11. We
exploit that connection in the next proposition. For a given (unrooted) tree T , let
f(T ; p) be the expected value of the rooted pruning polynomial EVp(T ; p), where
this average is computed over the collection of all rooted trees obtained from T by
placing the root at each vertex of T , in turn.

Proposition 2.13. Let T be a tree with n edges. Then

EVur(T ; p) = f(T ; p) + pn+1f(T ; p−1)− npn.

Proof. Let e be an edge of the unrooted tree T . By Proposition 2.11, e contributes
pce(u) + pce(v) − pn to EVur(T ; p).

By Proposition 2.9, for a rooted tree obtained from T by placing the root at
some vertex of T , e will contribute pce(u) or pce(v) to EVp(T ; p), resp., depending
on whether the root is closer to v or u, resp. Thus, the edge e contributes the
term

(
ce(u)pce(v) + ce(v)pce(u)

)
/(n + 1) to f(T ; p). Since ce(u) + ce(v) = n + 1
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for any edge e, we also get a contribution of
(
ce(u)pce(u) + ce(v)pce(v)

)
/(n + 1) to

pn+1f(T ; p−1).
Thus, the total contribution an edge e makes to the RHS of the formula is

pce(u) + pce(v). Subtracting npn and comparing the results with Propositions 2.9
and 2.11 completes the proof.

�

As an example of Proposition 2.13, let T be the unrooted tree of Figure 2. Let
Ti (for 1 ≤ i ≤ 5) denote the rooted tree obtained from T by placing the root at
vertex i. Then EVur(T ; p) = 3p + p2 + p3 − p4, and

EVp(T1; p) = EVp(T2; p) = 2p + p2 + p4

EVp(T3; p) = 3p + p2

EVp(T4; p) = 3p + p3

EVp(T5; p) = 2p + p3 + p4

The reader can check that
(∑5

i=1 EVp(Ti; p) + p5
∑5

i=1 EVp(Ti; p
−1)
)
/5−4p4 =

3p + p2 + p3 − p4 = EVur(T ; p).

1

2

3 4 5

Figure 2. Tree for Proposition 2.13.

3. Rooted Digraphs

When D is a rooted directed graph, we can define an expected rank polynomial
based on branching rank in the digraph D. EVb(D; p) still gives the expected
number of vertices reachable from the root, where directions of edges must be
respected.

If D is a rooted digraph obtained from a rooted graph by orienting the edges
of G in some manner, then it is clear that EVb(D; p) ≤ EVb(G; p) for all p (since
any orientation can only decrease the probability that a given vertex is reachable).
In this section, we answer the question of how much this expectation drops, on
average.

We begin with a result that essentially allows edges of a rooted graph to fail in
two stages.

Proposition 3.1. Let G be a rooted graph and G′ be a random graph derived from
G by deleting edges with probability 1− p′. Then EVb(G

′; p) = EVb(G; pp′).

Proof. Let m be the number of edges in G. We induct on m. The case where
m = 0 is immediate. The case m > 0 and G has no edges incident to the root is
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also immediate. Otherwise, let e be an edge incident to the root. With probability
1− p′, e has been deleted in G′ and EVb(G

′; p) = EVb(G− e; pp′). If e hasn’t been
deleted, we have

EVb(G
′; p) = (1 + EVb(G

′/e; p))p + (1− p)EVb(G
′ − e; p)

= (1 + EVb(G/e; pp′))p + (1− p)EVb(G− e; pp′)

where the final step follows by the induction hypothesis. Putting it all together,

EVb(G
′; p) = p′[p(1 + EVb(G/e; pp′)) + (1− p)EVb(G− e; pp′)]

+ (1− p′)EVb(G− e; pp′)

= pp′(1 + EVb(G/e; pp′)) + (1− pp′)EVb(G− e; pp′)

= EVb(G; pp′)

which is the desired result.
�

As an alternative to the inductive proof given, note that independence guarantees
that each edge succeeds with probability pp′. The proposition then follows immedi-
ately. The inductive proof illustrates the utility of deletion-contraction arguments,
however.

The next result concludes our treatment of randomness. We compute the average
expected rank polynomial of a rooted directed graph obtained from a fixed rooted
graph, averaged over all orientations of G.

Corollary 3.2. Let D be a rooted digraph obtained from a rooted graph by ran-
domly orienting the edges of G. Then the expected value of EVb(D; p) is given by
EVb(G; p/2).

Proof. By Proposition 2.2, we can express EVb(G; p) and EVb(D; p) using paths
joining the root to a given vertex v. In G, suppose an edge e is used along the
operational path joining ∗ to v. Then, on average, the same path will also use the
edge e in a directed path joining ∗ to v in D with probability 1/2, since e will be
oriented ‘correctly’ along the path with that probability. Now applying Proposition
3.1 with p′ = 1/2 gives the result. �

For example, let G be the rooted cycle C3. Then EVb(G; p) = 2p + 2p2 − 2p3.
Now there are 8 orientations of C3 which fall into 4 isomorphism classes, pictured
in Figure 3. Then EVb(D1; p) = 2p + p2 − p3, EVb(D2; p) = p + p2, EVb(D3; p) = p
and EVb(D4; p) = 0. Each digraph orientation of C3 is represented by one of these
Di (for 1 ≤ i ≤ 4), and each Di corresponds to two orientations of G. Thus, the
expected value of a random orientation of G is 2(2p+ p2− p3 + p+ p2 + p+ 0)/8 =
p + p2/2− p3/4 = EVb(G; p/2), which agrees with Corollary 3.2.

4. Grids

In this section, we concentrate on the optimal vertex location for grids. As
usual, we assume that each edge of the rooted graph succeeds independently with
probability p. Rooted trees are considered in [4] and [5]; the optimal location for
the root generally depends on the value of p. In fact, the optimal location can
switch arbitrarily often in general – see [10] and [8]. For certain graphs, however,
the optimal location is independent of p. In particular, for grids, we can show that
the ‘obvious’ locations for the root are indeed optimal for all values of p.
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* * * *

D1        D2      D3 D4

Figure 3. The possible orientations of C3.

A grid graph Gm,n is the graph whose vertices are ordered pairs of integers (a, b),
where 1 ≤ a ≤ m and 1 ≤ b ≤ n, with edges joining (a, b) to (a+ 1, b) and (a, b+ 1)
(provided a + 1 and b + 1 are in the valid range). Grids are important in many
applications, especially because of the way many cities are designed. Determining
the Tutte polynomial of a grid using deletion-contraction is examined in [11]; the
authors develop a complicated recursion, which they do not solve explicitly.

Our goal is more modest; we wish to prove the optimal location for the root
(from the viewpoint of the expected value polynomial) is a central vertex in the
grid, i.e., a vertex of minimum eccentricity. This is ‘obvious,’ but the proof relies
on a few lemmas.

Let P and Q be horizontally adjacent vertices of the grid Gm,n. We partition
the edges of Gm,n into two parts; a grid A = Gm,d that is symmetric with respect
to vertices P and Q, and B = Gm,n −Gm,d.

P Q

X Y

Z

Figure 4. The grid G5,6 with edges in A in bold.

Let X and Y be vertices of A which are symmetric with respect to the reflection
that interchanges P and Q in A, and let Z be any vertex in the grid Gm,n which is
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not incident to any edge of A (see Fig. 4). Then any path joining the vertices P and
Z in Gm,n must pass through the vertical line containing Q. This observation gives
the next lemma. We write Pr(X,Y ) for the probability that there is an operational
path joining vertices X and Y in the probabilistic graph G.

Lemma 4.1. Suppose P and Q are adjacent in a grid Gm,n, with Q more central
than P . Let A and B be the partition of the edges of Gm,n as above, and let
Z be any vertex in the grid Gm,n which is not incident to any edge of A. Then
Pr(P,Z) < Pr(Q,Z).

The next lemma considers the probability of reaching vertices in A from our two
roots P and Q.

Lemma 4.2. Suppose P and Q are adjacent in a grid Gm,n, with Q more central
than P . Let A and B be the partition of the edges of Gm,n as above, and let X and Y
be vertices of A which are symmetric with respect to the reflection that interchanges
P and Q in A. Then Pr(P,X) + Pr(P, Y ) < Pr(Q,X) + Pr(Q,Y ).

Proof. Let PrA(C,D) denote the probability that vertices C and D can commu-
nicate using only edges of A, and let PrB(C,D) be the probability that C and D
communicate using some edges of B. Then Pr(C,D) = PrA(C,D) + PrB(C,D).

Thus Pr(Q,X) +Pr(Q,Y )−Pr(P,X)−Pr(P, Y ) = PrA(Q,X) +PrA(Q,Y )−
PrA(P,X)−PrA(P, Y )+PrB(Q,X)+PrB(Q,Y )−PrB(P,X)−PrB(P, Y ). Now,
by symmetry, we have PrA(P,X) = PrA(Q,Y ) and PrA(P, Y ) = PrA(Q,X). This
gives Pr(Q,X) + Pr(Q,Y ) − Pr(P,X) − Pr(P, Y ) = PrB(Q,X) + PrB(Q,Y ) −
PrB(P,X)− PrB(P, Y ).

It remains to show PrB(Q,X) > PrB(P,X) and PrB(Q,Y ) > PrB(P, Y ) for all
values of p between 0 and 1. Now any successful path joining vertices P and X which
uses edges of B must reach a vertex Z not incident to any edge of A. By Lemma
4.1, Pr(P,Z) < Pr(Q,Z) for all 0 < p < 1. Since any path can be decomposed
into that portion reaching such a vertex Z and the remainder of the path, we have
PrB(Q,X) > PrB(P,X). The same argument also shows PrB(Q,Y ) > PrB(P, Y ),
and this completes the proof.

�

The proof of the next lemma follows immediately from Proposition 2.2 and Lem-
mas 4.1 and 4.2. We write EVX(Gm,n; p) for the expected value polynomial when
the grid is rooted at the vertex X. (We also write EV instead of EVb throughout
this section – all of the calculations use branching rank.)

Lemma 4.3. Let P and Q be adjacent vertices in Gm,n, with Q more central than
P . Then EVP (Gm,n; p) < EVQ(Gm,n; p) for all 0 < p < 1.

We can now use Lemma 4.3 repeatedly to prove our main result on grids. Note
that Gm,n may have a unique central vertex (if both m and n are odd), two central
vertices (if precisely one of m and n is odd) or four central vertices (if both m and
n are even).

Proposition 4.4. Let Gm,n be a grid with central vertex Q and non-central vertex
P. Then EVP (Gm,n; p) < EVQ(Gm,n; p) for all 0 < p < 1.

It should be possible to extend this argument to higher dimensional grid graphs;
in particular, we again can partition the edges into a symmetric piece A and the
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rest of the edges B. Then lemmas analogous to 4.1, 4.2 and 4.3 should remain valid.
We leave consideration of higher dimensions to the interested reader.

5. Vertex failure

The standard assumptions of reliability theory focus on edge failure. There are
theoretical and practical reasons for this [6], but it is possible to incorporate vertex
failure into our model of reliability. We present a brief overview here; many formulas
are quite similar to the edge failure formulas developed in previous sections, and
some formulas are much easier (e.g., complete graphs).

In this section, we assume edges are perfectly reliable, but the failure of a vertex
means that no path from the root can pass successfully through that vertex. We
also make the usual assumption about independence of vertex failure. (We assume
the root vertex is always operational; if the root were allowed to fail, we could easily
adjust all of the formulas that follow.)

To obtain a polynomial invariant for rooted graphs that is sensitive to vertex
failure, we modify Definition 2.1. As in the case of edge failure, we use branching
rank.

Definition 5.1. Let G be a rooted graph with root vertex ∗ and let V ∗ = V (G)−
{∗} denote the rest of the vertices. Suppose that each v ∈ V ∗ has an independent
probability p of being operational. Then define

EVv(G; p) =
∑

S⊆V ∗

rb(S)p|S|(1− p)|V
∗|−|S|,

where rb(S) is the number of vertices in the same component as the root in the
induced subgraph on S.

Linearity of expectation can be applied to indicator functions to give an expan-
sion analogous to the one given in Proposition 2.2.

Proposition 5.2. Let G be a rooted graph and let Prv(v) be the probability that
the root ∗ and v remain in the same component of G. Then

EVv(G; p) =
∑
v∈V ∗

Prv(v).

An immediate consequence of Proposition 5.2 is the following: If a rooted graph
has n vertices and the root is adjacent to every vertex in G, then EVv(G; p) =
(n− 1)p.

The next result is analogous to Proposition 2.3. We omit the straightforward
proof.

Proposition 5.3. Let G be a rooted graph with root vertex ∗ and let e be an edge
with endpoints ∗ and v. Then

EVv(G; p) = (1− p) · EVv(G− v; p) + p · EVv(G/e; p) + p.

In each of the terms on the right-hand side of the deletion-contraction recursion,
the number of vertices is reduced by 1. Note that if G/e has multiple edges, we
can replace it with a simple graph since the edges are assumed to be perfectly
reliable. Thus, for example, if G = Kn is a complete graph, we can replace Kn/e
by Kn−1. Then Proposition 5.3 can be applied to give inductive proofs of the
following formulas.
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Proposition 5.4. Let T be a rooted tree with n edges, Cn a rooted n-cycle, and
Kn a rooted complete graph on n vertices (including the root). Then

(1) EVv(T ; p) =
∑

v∈V ∗ pd(∗,v),

(2) EVv(Cn; p) = 2
∑n−2

k=1 p
k − (n− 3)pn−1,

(3) EVv(Kn; p) = (n− 1)p.

Note that the formulas for rooted trees and cycles are virtually identical to the
edge failure case. The formula for the complete graph is much simpler, though (see
[2, 3]). Note that the formula for complete graphs follows immediately from the
remark following Proposition 5.2.

Proposition 5.4 can be extended to give an explicit formula for complete muti-
partite graphs.

Corollary 5.5. Let Kn1,...,nk
be a multipartite graph with vertex partition ∪ki=1Vi,

where |Vi| = ni for all 1 ≤ i ≤ k. Suppose the root vertex ∗ ∈ V1, and write

N =
∑k

i=1 ni. Then

EVv(Kn1,...,nk
) = (N − n1)p + (n1 − 1)

(
1− (1− p)N−n1

)
.

Proof. If v /∈ V1, then v is adjacent to ∗, so Prv(v) = p. If v ∈ V1, then v will
be connected to ∗ provided one of the vertices adjacent to ∗ is operational. The
formula follows.

�

Note that the formula from Corollary 5.5 reduces to (n− 1)p when n1 = 1, i.e.,
when ∗ is adjacent to every other vertex.

We conclude with a combinatorial result. The derivative of EVv(G; p) encodes
information about the graph (although not as much as the edge-failure polynomial
- see [10] or [8]).

Proposition 5.6. If G is 2-connected, then EVv(G; 1)′ = |V | − 1.

The proof of this proposition follows from differentiating the deletion-contraction
formula of Proposition 5.3 and using induction. We leave the details to the reader.

As an example, from Proposition 5.4, we have EVv(Kn; p) = (n − 1)p, so
EVv(Kn; 1)′ = n − 1. For rooted cycles, we get EVv(Cn; 1)′ = 2(1 + 2 + · · · +
(n − 2)) − (n − 1)(n − 3) = n − 1. The necessity of the 2-connectedness condition
can be seen, for example, by considering a rooted path, where the result is false.
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