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Abstract

The known O(dk log k) bound on the VC dimension of k-fold unions or intersections

of a given concept class with VC dimension d is shown to be asymptotically tight.
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1 Concept Classes and VC Dimension

A concept over a set of points X is a subset of X. A concept class is a set of concepts.

A concept class C over X shatters a set of points Y ⊆ X if {c∩Y | c ∈ C} = 2Y , where 2Y

denotes the powerset of Y . The VC dimension of C [3] is sup{|Y | | C shatters Y ⊆ X}, a

quantity that may be used to bound the number of examples necessary to PAC learn any

concept from C [1].

2 k-fold Unions

For each integer k ≥ 1, we define Ck∪ to be the set of concepts that are the unions of k

concepts in C, or k-fold union of C. In symbols, Ck∪ := {c1∪· · ·∪ck | c1, . . . , ck ∈ C}. Note

that c1, . . . , ck need not be distinct, so Ck′∪ ⊆ Ck∪ for all k′ ∈ {1, . . . , k}.
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Blumer et al. [1] show that there exists real β > 0, independent of C and k, such that

the VC dimension of Ck∪ is at most β · dk log k, where d is the VC dimension of C. This

result simplifies the analysis of complex concept classes that may be expressed as k-fold

unions or intersections. In the same paper, for example, Blumer et al. use it to bound the

VC dimension of intersections of k halfspaces in Rn.

Our main result is that O(dk log k) is asymptotically tight when no restrictions are

placed on C.

Theorem 1. There exists real α > 0 such that for all d ≥ 5 and for all k ≥ 1, there

is a concept class C of VC dimension at most d such that Ck∪ has VC dimension at least

α · dk log k.

3 Preliminaries

Let x be a real number and n be a positive integer. (x)n :=
∏n−1

j=0 (x− j) denotes the nth

falling power of x. log x denotes the logarithm of x base 2. We use the following standard

inequalities, which hold when x ≤ 1 and k is a positive integer.

(
n

k

)
≤ (e · n/k)k 1− x ≤ e−x 1− nx ≤ (1− x)n

The last of these is Bernoulli’s inequality.

4 Desired Properties of the Construction

Let n be a positive integer and let X := {1, . . . , n2n}. In the next section, we construct

a random concept class C that possesses the following properties with probability 1 in the

limit as n→∞:
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1. C contains every concept with cardinality at most 1.

2. For each b = 1, . . . , dlog ne and for every set S ⊆ X such that |S| > n2n−b, there

exists a concept c ∈ C such that c ⊆ S and |c| ≥ n/b.

3. No two distinct C-concepts (concepts in C) intersect in 5 or more points.

The significance of these properties is given by the next two lemmas.

Lemma 2. If C satisfies Properties 1 and 2, then for all k ≥ 3 · 2n, Ck∪ shatters X.

Proof. It suffices to show that any set S ⊆ X may be written as a union of at most 3 · 2n

concepts in C. If S = ∅, this is clearly true, so assume S 6= ∅ to avoid unseemly edge cases.

The following greedy algorithm expresses S as a union of C-concepts:

1. Find a C-concept c ⊆ S of maximal cardinality.

2. If S 6= c, express S \ c 6= ∅ as a union of C-concepts and append c to the union.

Since C includes all one-point concepts (Property 1), c always exists, and this algorithm

always terminates. Property 2 ensures that the number of terms in the union is not too

large. Let

f(m) :=


b/n, if m > 2n and n2n−b < m ≤ n2n−b+1

1, if m ≤ 2n

F (m) :=

m∑
j=1

f(j).

Intuitively, if we assign cost 1 to each concept in the union and divide it equally among

the points in that concept, f(m) is the marginal cost of adding the mth point to S, and

F (m) is the total cost of the first m points. We first show by induction on |S| that the
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greedy algorithm expresses S as a union of at most F (|S|) concepts in C, confirming this

interpretation. We then bound F (|S|).

When 1 ≤ |S| ≤ 2n, the conclusion is immediate, as F (|S|) = |S|. Otherwise, let b be

the smallest integer such that |S| > n2n−b. The concept c chosen by the algorithm satisfies

|c| ≥ n/b by Property 2. By the inductive hypothesis, the algorithm proceeds to write S \c

as a union of at most F (|S| − |c|) concepts. Since f(|S|) = b/n and f is nonincreasing,

each of the |c| ≥ n/b terms f(|S| − |c|+ 1), f(|S| − |c|+ 2), . . . , f(|S|) is at least b/n. Thus,

F (|S|) ≥ 1 + F (|S| − |c|), and the conclusion follows.

We now verify that F (|S|) ≤ 3 · 2n for all S. Since F is increasing, assume S = X. We

have

F (n2n) =

n2n∑
j=1

f(j) =2n +

n2n∑
j=2n+1

f(j)

≤ 2n +

dlogne∑
b=1

n2n−b(b/n) = 2n +

dlogne∑
b=1

b2n−b ≤ 3 · 2n,

with the last inequality following from the sum
∑∞

b=1 b2
−b = 2.

Lemma 3. If C satisfies Property 3, then its VC dimension is at most 5.

Proof. Suppose that C shatters a nonempty set Y ⊆ X. Let y ∈ Y . There exist two distinct

concepts c1, c2 ∈ C such that Y = c1 ∩ Y and Y \ {y} = c2 ∩ Y . Thus Y \ {y} ⊆ c1 ∩ c2,

and by Property 3, |Y | ≤ |c1 ∩ c2|+ 1 < 5 + 1.

The construction alone will give us concept classes of VC dimension 5 whose k-fold

unions have VC dimension Θ(k log k), but Theorem 1 calls for classes of VC dimension d

whose k-fold unions have dimension Θ(dk log k). The following lemma allows us to increase

the VC dimensions of a concept class C and its k-fold union proportionally.
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Lemma 4. If a concept class C over X has VC dimension d and Ck∪ has VC dimension d′,

then for all integers ` ≥ 1, there exists a concept class D over {1, . . . , `} ×X such that D

has VC dimension `d, and Dk
∪ has VC dimension `d′.

Proof. A similar argument appears in the proof of Proposition 1 of [2]. Let

D := {({1} × c1) ∪ · · · ∪ ({`} × c`) | c1, . . . , c` ∈ C},

the tagged `-fold union of C. A set Y ⊆ {1, . . . , `} ×X is shattered by D if and only if

for all j ∈ {1, . . . , `}, the set {x | (j, x) ∈ Y } is shattered by C. Thus, the VC dimension

of D is `d. Since Dk
∪ is equal to the tagged `-fold union of Ck∪, its VC dimension is `d′ by

a similar argument.

5 The Construction

We construct the random concept class C :=
⋃dlogne

b=0 Cb, where each Cb is defined as follows.

Take C0 := {∅}∪{{x} | x ∈ X} to ensure that C satisfies Property 1. For b = 1, . . . , dlog ne,

let a := dn/be and s := n2n−b. Let t be a positive integer to be determined later and take

Cb := {c1, . . . , ct}, where c1, . . . , ct are independent random a-point concepts. By choosing

t to be large enough, we ensure that C satisfies Property 2 with probability 1 in the limit.

Let S ⊆ X be any s-point set. We call S covered if there exists j such that cj ⊆ S

and uncovered otherwise; if all s-point sets are covered, then C satisfies Property 2 for

the b under consideration. The probability that cj ⊆ S is

p :=

(
s

a

)/(
s2b

a

)
.
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We bound p as follows:

p = (s)a/(s2
b)a ≥ (s− a)a/(s2b)a = 2−ab(1− a/s)a ≥ 2−ab(1− a2/s),

using Bernoulli’s inequality for the last step. Noting that ab ≤ n+ dlog ne and also that

a ≤ n s ≥ 2n−1 a2/s ≤ n2 · 2−n+1,

we have p ≥ 2−(1+o(1))n(1− 2−(1−o(1))n) = 2−(1+o(1))n.

The probability that some s-point set is uncovered is no greater than the expected

number of uncovered sets, or
(
s2b

s

)
(1 − p)t. Thus, when t ≥ (n + ln

(
s2b

s

)
)/p, the former

quantity is bounded by

(
s2b

s

)
(1− p)t ≤

(
s2b

s

)
e−pt ≤ e−n.

We analyze the asymptotic order of the numerator with the standard binomial bound given

in Section 3, remembering that s ≤ n2n−1:

n+ ln

(
s2b

s

)
≤ n+ s ln(e · 2b) = n+ s(1 + b ln 2) = 2(1+o(1))n.

Regardless of b, then, choosing t := 2(2+o(1))n ensures that the probability of some set being

uncovered is at most e−n. C contains at most 1 + n2n + dlog net = 2(2+o(1))n concepts in

total and satisfies Property 2 with probability at least 1− dlog nee−n.

We show separately that C satisfies Property 3 with probability 1 in the limit. In

particular, we do not condition the distribution of C on satisfying Property 2: the key

fact here is that most of C is made up of a fixed number of independently chosen random

concepts, all of which have prescribed cardinalities of at most n points. If 0 ≤ n1, n2 ≤ n,
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the probability that a random n1-point concept intersects an independently chosen random

n2-point concept in at least 5 points is at most

q :=
n∑

j=5

(
n

j

)(
n2n − n
n− j

)/(
n2n

n

)
,

with equality when n1 = n2 = n. (The summand is the probability that the n-point

concepts intersect in exactly j points.) For large n, the j = 5 term of the sum is the

largest, and we have the inequalities

q ≤ (n− 4) ·
(
n

5

)(
n2n − n
n− 5

)/(
n2n

n

)
≤ n · n5

(
(n2n − n)n−5

(n− 5)!

)(
n!

(n2n − n)n

)
≤ n6(n2n − n)−5(n)5 ≤ n(2n − 1)−5n5 ≤ n6(2n − 1)−5 = 2−(5−o(1))n.

Ignoring the 1 + n2n concepts in C0, which are too small to have a 5-point intersection, C

consists of 2(2+o(1))n random concepts, making 2(4+o(1))n pairs that can potentially violate

Property 3. The probability that a particular pair constitutes a violation is at most q, so

the probability that any violation occurs is at most q ·2(4+o(1))n = 2−(1−o(1))n. C, therefore,

satisfies Properties 1, 2, and 3 with probability 1 in the limit.

We are now ready to prove Theorem 1. Given d and k, we take n to be the largest

integer such that 3 ·2n ≤ k, namely n := blog(k/3)c. If k is sufficiently large, the preceding

construction yields a concept class C with VC dimension at most 5 such that C3·2n∪ , and

thus Ck∪, has VC dimension n2n. Otherwise, let C := {∅, {1}}. Chosen in this way, C has

VC dimension Θ(k log k).

Applying Lemma 4 to C with expansion parameter ` := bd/5c, we obtain a concept

class D with VC dimension at most 5` ≤ d such that D has VC dimension ` · Θ(k log k),

which is within a constant factor α of dk log k. This concludes our proof of Theorem 1.
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6 Discussion

The construction described in this paper also yields lower bounds on the maximum VC

dimension of intersections, by duality under complementation, and symmetric differences,

since the greedy algorithm of Lemma 2 always produces disjoint unions.

It is natural to ask about the VC dimension of Ck∪ when C has VC dimension d < 5.

A lower bound of dk is easily obtained by applying Lemma 4 with ` := d to the class

{∅} ∪ {{x} | x ∈ {1, . . . , k}}. This bound is in fact tight for d = 1, since if Ck∪ shatters a

(k + 1)-point set Y , some concept c ∈ C contains two points y1, y2 ∈ Y , implying that C

shatters the set {y1, y2} and thus that d > 1.

For 2 ≤ d ≤ 4, there is a gap between the known O(k log k) upper bound and the

known Ω(k) lower bounds. Reyzin [2] gives an explicit construction that achieves (8/5)dk

for d ∈ {2, 4} and infinitely many k. Also open is whether the O(nk log k) bound obtained

by Blumer et al. on the VC dimension of intersections of k halfspaces in Rn is tight.
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