Simpler proofs of the power of one query to a p-selective set *

David Eisenstat
Department of Computer Science
University of Rochester
Rochester, NY 14627 USA

Univ. of Rochester Comp. Sci. Dept. Technical Report TR-2005-883 October 5, 2005

Abstract

We eliminate some special cases from the proofs of two theorems in which a machine instantiating a many-query reduction to a p-selective set is made to use only one query. The first theorem, originally proved by Buhrman, Torenvliet, and van Emde Boas [BTvEB93], states that any set that positively reduces to a p-selective set has a many-one reduction to that same set. The second, originally proved by Buhrman and Torenvliet [BT96], states that self-reducible p-selective sets are in P.

The p-selective sets were introduced by Selman [Sel79] as a complexity-theory analog of semire-cursive sets, which were introduced by Jockusch [Joc68]. This note assumes that the reader is familiar with basic complexity theory but presents definitions and basic propositions from the theory of p-selective sets. Interested readers are advised to consult the original papers [BTvEB93, BT96] and also Hemaspaandra and Torenvliet's monograph [HT02] on semifeasible algorithms.

A set $B \subseteq \Sigma^*$ is *p-selective* [Sel79] iff there exists a (total, deterministic) polynomial-time function $f: \Sigma^* \times \Sigma^* \to \Sigma^*$ such that for all $w, x \in \Sigma^*$,

- 1. $f(w, x) \in \{w, x\}$, and
- 2. $\overline{f}(w,x) \in B \to f(w,x) \in B$,

where \overline{f} is defined according to the rule

$$\overline{f}(w,x) := \begin{cases} x, & \text{if } f(w,x) = w \\ w, & \text{otherwise.} \end{cases}$$

f is a p-selector for B. This definition, although nonstandard, captures the same class of sets as the usual one while highlighting its duality under complementation. For example, the following proposition is a direct consequence of the contrapositive form of the condition $\overline{f}(w,x) \in B \to f(w,x) \in B$.

Proposition 1. If B is p-selective via p-selector f, then \overline{B} is p-selective via p-selector \overline{f} .

^{*}Supported in part by NSF grant NSF-CCF-0426761. Retyped with minor corrections on November 22, 2011.

Given a p-selector f, we can extend f to finite nonempty sets by repeated application of f. for all finite nonempty $W \subseteq \Sigma^*$ we define

$$f(W) := \begin{cases} w_1, & \text{if } |W| = 1\\ f(f(\dots f(w_1, w_2), w_3), \dots, w_n), & \text{otherwise,} \end{cases}$$

where w_1, \ldots, w_n is an enumeration of W in increasing lexicographic order. This extension of f has properties similar to those of a p-selector.

Proposition 2 ([BTvEB93]). Let B be p-selective via p-selector f and let $W \subseteq \Sigma^*$ be a finite nonempty set.

- 1. Given a reasonable encoding of finite sets, the extension of f is a polynomial-time function.
- 2. $f(W) \in W$.
- 3. $\overline{f}(W) \in B \to W \subseteq B$.
- 4. $f(W) \in \overline{B} \to B \subseteq \overline{W}$.

Next we consider the set of strings x whose inclusion in a p-selective set B is "obviously" entailed by the inclusion of a given string w. Formally, given a p-selective set B with p-selector f, we define for all $w \in \Sigma^*$ the set $B_f^+(w)$ according to the rule

$$B_f^+(w) := \{ x \in \Sigma^* \mid f(w, x) = x \}.$$

Buhrman, Torenvliet, and van Emde Boas call this set $B^+(w)$; we add a subscript f to reflect the dependence of this definition on f. These sets either contain B or are contained in B, depending on whether $w \in B$.

Proposition 3 ([BTvEB93]). Let B be a p-selective set with p-selector f. For all $w \in \Sigma^*$,

- 1. $B_f^+(w)$ is in P.
- 2. $w \in B \to B_f^+(w) \subseteq B$, and
- 3. $w \in \overline{B} \to B \subseteq B_f^+(w)$.

Now we define various reducibilities. These involve an oracle (Turing) machine M; we say M is polynomial-time iff there exists a polynomial p such that for all oracles $O \subseteq \Sigma^*$ and inputs $w \in \Sigma^*$, the computation $M^O(w)$ halts within p(|w|) steps, where |w| denotes the length of w. $L(M^O)$ is the set of strings accepted by M with oracle O. An oracle machine M is positive iff for all oracles $O \subseteq O' \subseteq \Sigma^*$, $L(M^O) \subseteq L(M^{O'})$.

Let $A, B \subseteq \Sigma^*$ be sets. A is positively reducible to B, denoted $A \leq_{pos}^p B$, iff there exists a positive polynomial-time oracle machine M such that $A = L(M^B)$. We say $A \leq_{\widehat{m}}^p B$ iff $A \leq_{pos}^p B$ via oracle machine M such that for all oracles $O \subseteq \Sigma^*$ and inputs $w \in \Sigma^*$, M makes at most one query during the computation $M^O(w)$. $\leq_{\widehat{m}}^p$ -reducibility, first introduced by Ambos-Spies [AS89], is a variant of many-one reducibility that avoids trivial corner cases: $A \leq_{\widehat{m}}^p B$ if and only if A is many-one reducible to B or A is in P.

A set $B \subseteq \Sigma^*$ is self-reducible [MP79] iff $B \leq_T^p B$ via oracle machine M such that for all oracles $O \subseteq \Sigma^*$ and inputs $w \in \Sigma^*$, M queries only strings shorter than w. B is many-one self-reducible iff it is self-reducible via an oracle machine that instantiates $B \leq_{\widehat{m}}^p B$.

We can now prove the theorems about the power of one query to a p-selective set.

Theorem 4 ([BTvEB93]). Suppose a set $A \subseteq \Sigma^*$ is positively reducible to a p-selective set B. Then $A \leq_{\widehat{m}}^p B$.

Proof. Let M be an oracle machine that instantiates $A \leq_{pos}^p B$, and let B have p-selector f. We specify the behavior of another oracle machine N and show that it instantiates $A \leq_{\widehat{m}}^p B$.

Given oracle $O \subseteq \Sigma^*$ and input $w \in \Sigma^*$, N computes $M^C(w)$, where $C := \{x \in \Sigma^* \mid M^{B_f^+(x)}(w) \text{ rejects}\}$, recording the set of queries Q_{yes} answered affirmatively and the set of queries Q_{no} answered negatively. If $M^C(w)$ accepts, N accepts iff Q_{yes} is empty or $\overline{f}(Q_{yes}) \in O$. Otherwise, N accepts iff Q_{no} is nonempty and $f(Q_{no}) \in O$. If N does not accept, it halts and rejects.

N is a positive polynomial-time oracle machine that queries O at most once. To show that $A = L(N^B)$, fix $w \in \Sigma^*$; it suffices to show that $N^B(w)$ accepts if and only if $M^B(w)$ accepts. Assume first that $M^C(w)$ accepts. This entails that $M^{Q_{yes}}(w)$ also accept. If Q_{yes} is empty, then $N^B(w)$ accepts, and $Q_{yes} \subseteq B$. Since M is positive, $M^B(w)$ accepts as well. Otherwise, let $x := \overline{f}(Q_{yes})$. If $x \in B$, then $N^B(w)$ accepts, $Q_{yes} \subseteq B$, and $M^B(w)$ accepts. If $x \in \overline{B}$, then $N^B(w)$ rejects and $B \subseteq B_f^+(x)$. Since $x \in C$, $M^{B_f^+(x)}(w)$ rejects, and thus $M^B(w)$ rejects. The case when $M^C(w)$ rejects is exactly dual.

Theorem 5 ([BT96]). Suppose $B \subseteq \Sigma^*$ is p-selective and self-reducible. Then B is many-one self-reducible.

Proof. Let M be an oracle machine via which B is self-reducible, and let B have p-selector f. We specify the behavior of another oracle machine N via which B is many-one self-reducible.

Given oracle $O \subseteq \Sigma^*$ and input $w \in \Sigma^*$, N computes $M^{B_f^+(w)}(w)$, recording the set of queries Q_{yes} answered affirmatively and the set of queries Q_{no} answered negatively. If this computation accepts, N accepts iff Q_{yes} is empty or $\overline{f}(Q_{yes}) \in O$. Otherwise, N accepts iff Q_{no} is nonempty and $f(Q_{no}) \in O$. If N does not accept, it halts and rejects.

N is a positive polynomial-time oracle machine such that for all oracles $O \subseteq \Sigma^*$ and inputs $w \in \Sigma^*$, N queries at most one string during the computation $N^O(w)$, and this string, if extant, is shorter than w. To show that $A = L(N^B)$, fix $w \in \Sigma^*$; it suffices to show that $N^B(w)$ accepts if and only if $w \in B$. Assume first that $M^{B_f^+(w)}(w)$ accepts. This entails that $M^{Q_{yes}}(w)$ also accept. When Q_{yes} is nonempty, let $x := \overline{f}(Q_{yes})$. If Q_{yes} is empty or $x \in B$, then $N^B(w)$ accepts, and $Q_{yes} \subseteq B$. It follows that $w \in B$, since if $y \in B \cap Q_{no}$, f(w,y) = w and $y \in B$ implies that $w \in B$; otherwise $M^B(w)$ and $M^{Q_{yes}}(w)$ behave identically. If $x \in \overline{B}$, then $N^B(w)$ rejects and $w \in \overline{B}$, since f(w,x) = w. The case when $M^{B_f^+(w)}(w)$ rejects is exactly dual.

The latter theorem has the following immediate corollary, via iteration.

Corollary 6 ([BT96]). B is in P if and only if B is p-selective and self-reducible.

The author thanks Lane Hemaspaandra for helpful comments and for proofreading an earlier draft.

References

[AS89] Klaus Ambos-Spies. Honest polynomial time reducibilities and the P=?NP problem. Journal of Computer and System Sciences, 39(3):250–281, December 1989.

- [BT96] Harry Buhrman and Leen Torenvliet. P-selective self-reducible sets: a new characterization of P. Journal of Computer and System Sciences, 53(2):210–217, October 1996.
- [BTvEB93] Harry Buhrman, Leen Torenvliet, and Peter van Emde Boas. Twenty questions to a p-selector. *Information Processing Letters*, 48(4):201–204, November 1993.
- [HT02] Lane A. Hemaspaandra and Leen Torenvliet. Theory of semi-feasible algorithms. Springer, December 2002.
- [Joc68] Carl G. Jockusch. Semirecursive sets and positive reducibility. *Transactions of the American Mathematical Society*, 131(2):420–436, May 1968.
- [MP79] Albert R. Meyer and Mike Paterson. With what frequency are apparently intractable problems difficult? Technical Report MIT-LCS-TM-126, Massachusetts Institute of Technology Laboratory for Computer Science, February 1979.
- [Sel79] Alan L. Selman. P-selective sets, tally languages, and the behavior of polynomial time reducibilities on NP. *Mathematical Systems Theory*, 13:55–65, 1979.