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Abstract

We eliminate some special cases from the proofs of two theorems in which a machine in-
stantiating a many-query reduction to a p-selective set is made to use only one query. The first
theorem, originally proved by Buhrman, Torenvliet, and van Emde Boas [BTvEB93], states
that any set that positively reduces to a p-selective set has a many-one reduction to that same
set. The second, originally proved by Buhrman and Torenvliet [BT96], states that self-reducible
p-selective sets are in P.

The p-selective sets were introduced by Selman [Sel79] as a complexity-theory analog of semire-
cursive sets, which were introduced by Jockusch [Joc68]. This note assumes that the reader is fa-
miliar with basic complexity theory but presents definitions and basic propositions from the theory
of p-selective sets. Interested readers are advised to consult the original papers [BTvEB93, BT96]
and also Hemaspaandra and Torenvliet’s monograph [HT02] on semifeasible algorithms.

A set B ⊆ Σ∗ is p-selective [Sel79] iff there exists a (total, deterministic) polynomial-time
function f : Σ∗ × Σ∗ → Σ∗ such that for all w, x ∈ Σ∗,

1. f(w, x) ∈ {w, x}, and

2. f(w, x) ∈ B → f(w, x) ∈ B,

where f is defined according to the rule

f(w, x) :=

{
x, if f(w, x) = w

w, otherwise.

f is a p-selector for B. This definition, although nonstandard, captures the same class of sets as
the usual one while highlighting its duality under complementation. For example, the following
proposition is a direct consequence of the contrapositive form of the condition f(w, x) ∈ B →
f(w, x) ∈ B.

Proposition 1. If B is p-selective via p-selector f , then B is p-selective via p-selector f .
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Given a p-selector f , we can extend f to finite nonempty sets by repeated application of f . for
all finite nonempty W ⊆ Σ∗ we define

f(W ) :=

{
w1, if |W | = 1

f(f(. . . f(w1, w2), w3), . . . , wn), otherwise,

where w1, . . . , wn is an enumeration of W in increasing lexicographic order. This extension of f
has properties similar to those of a p-selector.

Proposition 2 ([BTvEB93]). Let B be p-selective via p-selector f and let W ⊆ Σ∗ be a finite
nonempty set.

1. Given a reasonable encoding of finite sets, the extension of f is a polynomial-time function.

2. f(W ) ∈W .

3. f(W ) ∈ B →W ⊆ B.

4. f(W ) ∈ B → B ⊆W .

Next we consider the set of strings x whose inclusion in a p-selective set B is “obviously” entailed
by the inclusion of a given string w. Formally, given a p-selective set B with p-selector f , we define
for all w ∈ Σ∗ the set B+

f (w) according to the rule

B+
f (w) := {x ∈ Σ∗ | f(w, x) = x}.

Buhrman, Torenvliet, and van Emde Boas call this set B+(w); we add a subscript f to reflect the
dependence of this definition on f . These sets either contain B or are contained in B, depending
on whether w ∈ B.

Proposition 3 ([BTvEB93]). Let B be a p-selective set with p-selector f . For all w ∈ Σ∗,

1. B+
f (w) is in P .

2. w ∈ B → B+
f (w) ⊆ B, and

3. w ∈ B → B ⊆ B+
f (w).

Now we define various reducibilities. These involve an oracle (Turing) machine M ; we say M is
polynomial-time iff there exists a polynomial p such that for all oracles O ⊆ Σ∗ and inputs w ∈ Σ∗,
the computation MO(w) halts within p(|w|) steps, where |w| denotes the length of w. L(MO) is
the set of strings accepted by M with oracle O. An oracle machine M is positive iff for all oracles
O ⊆ O′ ⊆ Σ∗, L(MO) ⊆ L(MO′

).
Let A,B ⊆ Σ∗ be sets. A is positively reducible to B, denoted A ≤p

pos B, iff there exists a
positive polynomial-time oracle machine M such that A = L(MB). We say A ≤p

m̂ B iff A ≤p
pos B

via oracle machine M such that for all oracles O ⊆ Σ∗ and inputs w ∈ Σ∗, M makes at most one
query during the computation MO(w). ≤p

m̂-reducibility, first introduced by Ambos-Spies [AS89],
is a variant of many-one reducibility that avoids trivial corner cases: A ≤p

m̂ B if and only if A is
many-one reducible to B or A is in P.

A set B ⊆ Σ∗ is self-reducible [MP79] iff B ≤p
T B via oracle machine M such that for all oracles

O ⊆ Σ∗ and inputs w ∈ Σ∗, M queries only strings shorter than w. B is many-one self-reducible
iff it is self-reducible via an oracle machine that instantiates B ≤p

m̂ B.
We can now prove the theorems about the power of one query to a p-selective set.
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Theorem 4 ([BTvEB93]). Suppose a set A ⊆ Σ∗ is positively reducible to a p-selective set B.
Then A ≤p

m̂ B.

Proof. Let M be an oracle machine that instantiates A ≤p
pos B, and let B have p-selector f . We

specify the behavior of another oracle machine N and show that it instantiates A ≤p
m̂ B.

Given oracle O ⊆ Σ∗ and input w ∈ Σ∗, N computes MC(w), where C := {x ∈ Σ∗ |
MB+

f (x)(w) rejects}, recording the set of queries Qyes answered affirmatively and the set of queries
Qno answered negatively. If MC(w) accepts, N accepts iff Qyes is empty or f(Qyes) ∈ O. Otherwise,
N accepts iff Qno is nonempty and f(Qno) ∈ O. If N does not accept, it halts and rejects.

N is a positive polynomial-time oracle machine that queries O at most once. To show that
A = L(NB), fix w ∈ Σ∗; it suffices to show that NB(w) accepts if and only if MB(w) accepts.
Assume first that MC(w) accepts. This entails that MQyes(w) also accept. If Qyes is empty,
then NB(w) accepts, and Qyes ⊆ B. Since M is positive, MB(w) accepts as well. Otherwise, let
x := f(Qyes). If x ∈ B, then NB(w) accepts, Qyes ⊆ B, and MB(w) accepts. If x ∈ B, then

NB(w) rejects and B ⊆ B+
f (x). Since x ∈ C, MB+

f (x)(w) rejects, and thus MB(w) rejects. The

case when MC(w) rejects is exactly dual.

Theorem 5 ([BT96]). Suppose B ⊆ Σ∗ is p-selective and self-reducible. Then B is many-one
self-reducible.

Proof. Let M be an oracle machine via which B is self-reducible, and let B have p-selector f . We
specify the behavior of another oracle machine N via which B is many-one self-reducible.

Given oracle O ⊆ Σ∗ and input w ∈ Σ∗, N computes MB+
f (w)(w), recording the set of queries

Qyes answered affirmatively and the set of queries Qno answered negatively. If this computation
accepts, N accepts iff Qyes is empty or f(Qyes) ∈ O. Otherwise, N accepts iff Qno is nonempty
and f(Qno) ∈ O. If N does not accept, it halts and rejects.

N is a positive polynomial-time oracle machine such that for all oracles O ⊆ Σ∗ and inputs
w ∈ Σ∗, N queries at most one string during the computation NO(w), and this string, if extant, is
shorter than w. To show that A = L(NB), fix w ∈ Σ∗; it suffices to show that NB(w) accepts if

and only if w ∈ B. Assume first that MB+
f (w)(w) accepts. This entails that MQyes(w) also accept.

When Qyes is nonempty, let x := f(Qyes). If Qyes is empty or x ∈ B, then NB(w) accepts, and
Qyes ⊆ B. It follows that w ∈ B, since if y ∈ B ∩Qno, f(w, y) = w and y ∈ B implies that w ∈ B;
otherwise MB(w) and MQyes(w) behave identically. If x ∈ B, then NB(w) rejects and w ∈ B,

since f(w, x) = w. The case when MB+
f (w)(w) rejects is exactly dual.

The latter theorem has the following immediate corollary, via iteration.

Corollary 6 ([BT96]). B is in P if and only if B is p-selective and self-reducible.

The author thanks Lane Hemaspaandra for helpful comments and for proofreading an earlier
draft.
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