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Abstract

We eliminate some special cases from the proofs of two theorems in which a machine in-
stantiating a many-query reduction to a p-selective set is made to use only one query. The first
theorem, originally proved by Buhrman, Torenvliet, and van Emde Boas [BTvEB93|, states
that any set that positively reduces to a p-selective set has a many-one reduction to that same
set. The second, originally proved by Buhrman and Torenvliet [BT96], states that self-reducible
p-selective sets are in P.

The p-selective sets were introduced by Selman [Sel79] as a complexity-theory analog of semire-
cursive sets, which were introduced by Jockusch [Joc68]. This note assumes that the reader is fa-
miliar with basic complexity theory but presents definitions and basic propositions from the theory
of p-selective sets. Interested readers are advised to consult the original papers [BTvEB93| [BT96]
and also Hemaspaandra and Torenvliet’s monograph [HT02] on semifeasible algorithms.

A set B C ¥* is p-selective [Sel79] iff there exists a (total, deterministic) polynomial-time
function f : ¥* x ¥* — ¥* such that for all w,x € ¥*,

1. f(w,z) € {w,z}, and
2. f(w,x) € B— f(w,x) € B,
where f is defined according to the rule

- o {m, if f(w,z) =w

w, otherwise.

f is a p-selector for B. This definition, although nonstandard, captures the same class of sets as
the usual one while highlighting its duality under complementation. For example, the following
proposition is a direct consequence of the contrapositive form of the condition f(w,z) € B —
f(w,z) € B.

Proposition 1. If B is p-selective via p-selector f, then B is p-selective via p-selector f.
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Given a p-selector f, we can extend f to finite nonempty sets by repeated application of f. for
all finite nonempty W C ¥* we define

w1y, if ’W‘ =1
fW) = :
UG flwr,we),ws), ... wy), otherwise,
where wq, ..., w, is an enumeration of W in increasing lexicographic order. This extension of f

has properties similar to those of a p-selector.

Proposition 2 ([BTvEB93]). Let B be p-selective via p-selector f and let W C ¥* be a finite
nonempty set.

1. Ghven a reasonable encoding of finite sets, the extension of f is a polynomial-time function.
3. f(W)e B— W C B.
4. fW)eB—-BCW.

Next we consider the set of strings  whose inclusion in a p-selective set B is “obviously” entailed
by the inclusion of a given string w. Formally, given a p-selective set B with p-selector f, we define
for all w € ¥* the set B]T(w) according to the rule

B}"(w) ={zx e ¥ | f(w,x) =z}

Buhrman, Torenvliet, and van Emde Boas call this set BT (w); we add a subscript f to reflect the
dependence of this definition on f. These sets either contain B or are contained in B, depending
on whether w € B.

Proposition 3 ([BTvEB93]). Let B be a p-selective set with p-selector f. For all w € ¥*,
1. Bf (w) is in P.

2. w GB—>B;{(w) C B, and

3. w e B — B C Bf (w).

Now we define various reducibilities. These involve an oracle (Turing) machine M; we say M is
polynomial-time iff there exists a polynomial p such that for all oracles O C ¥* and inputs w € ¥*,
the computation M?(w) halts within p(|w|) steps, where |w| denotes the length of w. L(M?©) is
the set of strings accepted by M with oracle O. An oracle machine M is positive iff for all oracles
OcCO cx* L(M°) C L(M?).

Let A, B C X* be sets. A is positively reducible to B, denoted A <P,s B, iff there exists a
positive polynomial-time oracle machine M such that A = L(M?). We say A <L B iff A <},s B
via oracle machine M such that for all oracles O C ¥* and inputs w € ¥*, M makes at most one
query during the computation MO (w). <P -reducibility, first introduced by Ambos-Spies [AS89),
is a variant of many-one reducibility that avoids trivial corner cases: A g% B if and only if A is
many-one reducible to B or A is in P.

A set B C ¥* is self-reducible [MPT79)] iff B <!. B via oracle machine M such that for all oracles
O C ¥* and inputs w € ¥*, M queries only strings shorter than w. B is many-one self-reducible
iff it is self-reducible via an oracle machine that instantiates B S% B.

We can now prove the theorems about the power of one query to a p-selective set.



Theorem 4 ([BTVEB93]). Suppose a set A C ¥* is positively reducible to a p-selective set B.
Then A <Y B.

Proof. Let M be an oracle machine that instantiates A <P,s B, and let B have p-selector f. We
specify the behavior of another oracle machine N and show that it instantiates A <l B.
Given oracle O C ¥* and input w € ¥*, N computes M®(w), where C' := {x € ¥* |

MB7 (g’)(w) rejects}, recording the set of queries Q)¢5 answered affirmatively and the set of queries
Qno answered negatively. If M (w) accepts, N accepts iff Qyes is empty or f(Qyes) € O. Otherwise,
N accepts iff Qo is nonempty and f(Qno) € O. If N does not accept, it halts and rejects.

N is a positive polynomial-time oracle machine that queries O at most once. To show that
A = L(NP), fix w € ¥*; it suffices to show that N (w) accepts if and only if MP(w) accepts.
Assume first that M (w) accepts. This entails that M®@ves(w) also accept. If Qyes is empty,
then NZ(w) accepts, and Qyes € B. Since M is positive, MPB(w) accepts as well. Otherwise, let
7= f(Ques). If x € B, then NB(w) accepts, Qyes € B, and MP(w) accepts. If z € B, then

NB(w) rejects and B C B;{(Q:) Since x € C, MBF @ (w) rejects, and thus MP(w) rejects. The
case when MC (w) rejects is exactly dual. O

Theorem 5 ([BT96]). Suppose B C ¥* is p-selective and self-reducible. Then B is many-one
self-reducible.

Proof. Let M be an oracle machine via which B is self-reducible, and let B have p-selector f. We
specify the behavior of another oracle machine N via which B is many-one self-reducible.

Given oracle O C ¥* and input w € ¥*, N computes M By (w) (w), recording the set of queries
Qyes answered affirmatively and the set of queries @, answered negatively. If this computation
accepts, N accepts iff QQyes is empty or ?(des) € 0. Otherwise, N accepts iff Q),,, is nonempty
and f(Qno) € O. If N does not accept, it halts and rejects.

N is a positive polynomial-time oracle machine such that for all oracles O C ¥* and inputs
w € X*, N queries at most one string during the computation N O(w), and this string, if extant, is
shorter than w. To show that A = L(NP), fix w € ¥*; it suffices to show that NZ(w) accepts if

and only if w € B. Assume first that M B (w) (w) accepts. This entails that M@ves (w) also accept.
When Qs is nonempty, let @ := f(Qyes). If Ques is empty or # € B, then NB(w) accepts, and
Qyes € B. It follows that w € B, since if y € BN Qno, f(w,y) = w and y € B implies that w € B;

otherwise MZ(w) and M®@ves(w) behave identically. If z € B, then NZ(w) rejects and w € B,

since f(w,z) = w. The case when MPBF) (w) rejects is exactly dual. O
The latter theorem has the following immediate corollary, via iteration.
Corollary 6 ([BT96]). B is in P if and only if B is p-selective and self-reducible.

The author thanks Lane Hemaspaandra for helpful comments and for proofreading an earlier
draft.
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