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Abstract. We show that random DNF formulas, random log-depth decision trees
and random deterministic finite acceptors cannot be weakly learned with a poly-
nomial number of statistical queries with respect to an arbitrary distribution on
examples.

1 Introduction

Polynomial time learning algorithms have been given for random log-depth decision
trees by Jackson and Servedio [6], random monotone DNF formulas by Jackson et
al. [5] and Sellie [12] and random general DNF formulas by Sellie [12], with respect to
the uniform distribution. These algorithms are based on statistical estimates of various
parameters and can be implemented using statistical queries as defined by Kearns [8].

Blum et al. [2] give upper and lower bounds on the number of statistical queries
required to learn concepts from a given class in terms of a distribution-dependent sta-
tistical query dimension of the class. A corollary of their characterization is that parity
functions with log n relevant variables cannot be weakly learned with respect to the
uniform distribution using a polynomial number of statistical queries. This implies that
arbitrary log-depth decision trees and DNF formulas with Θ(n) terms are not weakly
learnable with respect to the uniform distribution using a polynomial number of statis-
tical queries, because they can represent parity functions with log n relevant variables.

The key difference between these negative results and the positive results cited
above is that the choice of a structure (DNF formula or decision tree) to be learned is
random. In particular, “bad structures” (capable of representing a parity problem with
log n relevant variables with respect to the uniform distribution) occur with vanishing
probability as n increases.
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1.1 Learning DFAs

A deterministic finite acceptor M over the alphabet {0, 1} can be used to represent
the set L(M) ∩ {0, 1}n of accepted binary strings of length n. Gold [4] gave one of
the earliest hardness results for learning DFAs, that finding a smallest DFA consis-
tent with given positive and negative data is NP-hard. The PAC-reduction given by Pitt
and Warmuth [10] of learning Boolean formulas to learning DFAs, combined with the
negative results of Kearns and Valiant [7] for PAC-learning Boolean formulas, gives
cryptographic evidence for the hardness of PAC-learning arbitrary DFAs.

Because a DFA of 2n + 1 states can compute the parity of an arbitrary subset of a
string of n bits, the results of Blum et al. [2] imply that there is no algorithm to learn
arbitrary DFAs using a polynomial number of statistical queries with respect to the
uniform distribution. In light of the positive results described above for random DNF
formulas and random decision trees, it is natural to ask how hard it is to learn random
DFAs of O(nc) states with respect to the uniform distribution over strings of length n.

Trakhtenbrot and Barzdin [13] consider the problem of learning arbitrary finite au-
tomata using experiments – in each experiment the learning algorithm selects an input
string to query and receives the sequence of output symbols generated by the target ma-
chine on reading that input. For a DFA, this is equivalent to a sequence of membership
queries on all prefixes of the experiment string. Trakhtenbrot and Barzdin also consider
the problem of learning almost all automata under a natural distribution on DFAs.

Building on these results, Freund et al. [3] consider a model in which the target is
a DFA with an arbitrary transition graph and states independently labeled as accepting
or rejecting with probability 1/2. The learner sees the outputs of a random walk in the
transition graph, and must at each step predict the next output. Freund et al. show that
there is an algorithm that makes a number of mistakes bounded by a polynomial in n
for uniformly almost all automata of n states. In an empirical study of the effectiveness
of a learning algorithm based on Trakhtenbrot and Barzdin’s contraction algorithm,
Lang [9] studied what fraction of all 16n2−1 binary strings of length at most 2 log n+3
is needed to achieve high levels of generalization for randomly generated machines of
about n states.

These results do not directly shed light on the question of how difficult it is to learn
a set of binary strings of length n accepted by a random DFA of O(nc) states with
respect to the uniform distribution. We are interested in this problem, which is open to
the best of our knowledge.

1.2 Lower bounds

In this paper we show that no algorithm using a polynomial number of statistical queries
can learn random DNF formulas, random decision trees, or random DFAs with respect
to an arbitrary distribution. Thus the random choice of a structure is not sufficient for the
positive results cited above for DNF formulas and decision trees. Even if the structure is
randomly chosen, it may be possible to find a “bad input distribution” that allows a hard
parity problem to be embedded in that random structure. This situation is a natural one
to consider in the case of a boosting algorithm attempting to learn a random structure,



because successive rounds of boosting may modify an initially simple input distribution
in complex ways that depend on the target concept.

Specifically, we consider the problem of learning the behavior of a random structure
using statistical queries, where the distribution on examples is adversarial, and there-
fore may depend on the random structure to be learned. For the cases when the random
structure is a DNF formula, a log-depth decision tree, or a DFA we show that with at
least a constant probability, there is a distribution on the inputs that embeds a nontrivial
parity computation in the random structure. In general the “bad” distribution constrains
some variables to constant values and some variables to copy other variables or their
negations, and is uniform on the rest. These results provide some support for the distri-
butional assumptions made in the positive results of Jackson and Servedio [6], Jackson
et al. [5] and Sellie [11, 12].

2 Preliminaries

We consider concept classes over binary strings. Let Σ = {0, 1}. Σ∗ is the set of all
binary strings and ε is the empty string. The set of all binary strings of length n, length
at most n and length less than n are denoted Σn, Σ≤n and Σ<n. A concept class C is
a collection {Cn} indexed by the positive integer n, where each Cn is a set of concepts
overΣn (orΣ≤n) that is, a set of mappings f fromΣn (orΣ≤n) toΣ. Concept classes
are generally specified by some representation, for example, log depth decision trees
over n variables. A concept class has polynomially bounded representations if there is
a fixed polynomial p such that every concept f in Cn has a representation of length
bounded by p(n).

2.1 Learning with Statistical Queries

Let X = Σn or Σ≤n, let D be a probability distribution over X and f a mapping from
X to {0, 1}. The goal of learning is to be able to predict f(x) well when x is drawn
according to D. Statistical queries provide a particular way of gathering information
about the function f . They were introduced by Kearns to characterize a wide class of
noise tolerant learning algorithms [8].

The statistics oracle STAT(f,D) answers statistical queries, each of which spec-
ifies two arguments: a predicate χ mapping X × {0, 1} to {0, 1}, and a tolerance
τ ∈ [0, 1]. The answer returned by the oracle is any number v such that

|ED[χ(x, f(x))]− v| ≤ τ.

That is, the oracle may return any number v within an additive error τ of the expected
value of χ on a labeled example (x, f(x)) where x is drawn according to D and clas-
sified using f . A statistical query abstracts the process of drawing a sample of labeled
examples (x, f(x)) according toD to estimate the probability that they satisfy the pred-
icate χ. For example, a statistical query might be used to estimate the probability that
the conjunction of two literals is equal to the label of an example.

A concept class C with polynomially bounded representations is (strongly) learn-
able in polynomial time using statistical queries if there exists a polynomial p and a



learning algorithm A such that for every positive integer n, for every f ∈ Cn, for every
probability distribution D on Σn and for every ε > 0, A with inputs n and ε and access
to the statistics oracle STAT(f,D) satisfies the following properties.
1. For every statistical query (χ, τ) made by A, the predicate χ can be evaluated in

time bounded by p(1/ε, n) and 1/τ < p(1/ε, n).
2. A runs in time bounded by p(1/ε, n).
3. A outputs a hypothesis h such that h(x) can be evaluated in time bounded by
p(1/ε, n) and when x is drawn from D, the probability that h(x) 6= f(x) is at
most ε.

For a concept class that does not have polynomially bounded representations, the
polynomial p has an additional parameter size(f) bounding the length of the represen-
tation of the target concept f . For a randomized learning algorithm A we require that A
return an ε-good hypothesis h with at least an inverse polynomial probability. A single
statistical query suffices to estimate the accuracy of a candidate hypothesis, allowing
the probability of success to be boosted easily using repeated runs.

To define weak learnability, we omit ε and ask that the probability that h(x) 6= f(x)
be bounded by 1/2 − 1/q(n) for some polynomial q. That is, the error rate in this
case need only be better than 1/2 by an inverse polynomial. Polynomial time weak
learnability using statistical queries has been shown to imply polynomial time strong
learnability using statistical queries by Aslam and Decatur [1].

To define learnability using a polynomial number of statistical queries, we replace
the requirement thatA run in polynomial time with the requirement thatAmake at most
a polynomial number of statistical queries. We still require that each statistical query
have a polynomial time evaluatable predicate and an inverse polynomial tolerance.

To define learnability of random target concepts, we assume that there is a probabil-
ity distribution on the elements of Cn that determines the choice of the target concept f .
We require that the probability that A fails to satisfy the required conditions be o(1) as
a function of n. Thus, there may be a subset of the concepts in Cn on which A always
fails, but the probability of that set must tend to zero as n increases.

2.2 The Parity Learning Problem
A parity function over n variables with ` relevant variables is a mapping from Σn to
{0, 1} that is equal to the sum modulo 2 of a fixed subset of ` of its arguments. For the
problem of learning a parity function ψ over n variables with `(n) relevant variables
with respect to the uniform distribution on examples, a learning algorithm is given n,
`(n) and access to the statistics oracle STAT(ψ,U), whereU is the uniform distribution
over Σn. When `(n) = Θ(log n), no learning algorithm, even a randomized one, can
achieve weak learning for this problem using polynomially many statistical queries [2]

3 Random DNF formulas

In this section we prove the lower bound for random DNF formulas. The embedding is
quite straightforward in this case, and highlights the general framework of the reduction.
The framework is similar for random log depth decision trees and random deterministic
finite acceptors, but the embeddings are somewhat more complex.



3.1 Model

Let n be positive integer and V = {v1, . . . , vn}. We adopt the model used by Sellie
of random DNF formulas over the variables V . Each term is a conjunction of c log(n)
literals created by selecting a random subset of c log(n) variables and negating each
variable independently with probability 1/2. The target random DNF formula is a dis-
junction of independently selected terms. Sellie gives a polynomial time algorithm to
learn a random DNF with at most nc log log(n) terms under the uniform distribution on
inputs [12].

For ease of description we first consider random monotone DNF formulas, in which
the step of negating variables is omitted; the general case is described later. Given a
positive integer `, let n = 23`; then we have ` = 1

3 log(n) and 2` = n1/3. Let φ
denote a random monotone DNF formula of t = 2`−1 terms, where each term contains
` variables.

We first show that with probability 1 − o(1), no variable occurs more than once in
φ, that is, φ is a read once formula. We can think of the process of choosing terms as
successive random choices of a set of ` variables. If each set chosen avoids the variables
chosen by the previous sets, then the formula is read once. Consider the last set chosen;
it must avoid a collection of at most s = (t−1)` variables, which it does with probability
at least (

(n− s)
`

)(
n

`

)−1
≥ 1− s`

n− s+ 1
,

provided n is sufficiently large. Thus the probability of failure for the last term is
O((log2 n)/n2/3), and the probability that any of the O(n1/3) terms fails is at most
O((log2 n)/n1/3), which bounds the probability that φ is not read once.

In what follows we assume that φ is read once. As an example, for ` = 3 we have
n = 512 and t = 4 and a possible value of φ is the following.

φ = v14v133v170 ∨ v22v101v337 ∨ v55v266v413 ∨ v10v332v507

3.2 Embedding Parity

We consider the problem of learning a parity function with ` relevant variables from a
total of m = n/t variables Y = {y1, y2, . . . , ym} with respect to the uniform distribu-
tion on assignments to Y . Because ` = Θ(log(n)) and m = Θ(n2/3), such a function
cannot be weakly learned using a polynomial number of statistical queries with respect
to the uniform distribution [2].

Let L denote the set of literals over Y . A mapping from V to L is an equi-grouping
if exactly n/(2m) = t/2 variables in V are mapped to each literal in L.

With respect to an arbitrary mapping f from V toL, an assignment a to the variables
Y induces an assignment af to the variables V by af (vi) = a(f(vi)), that is, the
value assigned to variable vi is the value assigned by a to the literal f(vi) ∈ L. More
generally, a distribution D over assignments a to variables in Y induces a distribution
Df over assignments b to variables in V , where Df (b) is the sum of D(a) such that
af = b.



Fix an arbitrary parity function with ` relevant variables from Y . It can be repre-
sented by a DNF formula ψ of t = 2`−1 terms, where each term has exactly one literal
for each relevant variable, and the number of positive literals in each term is odd. For
example, if the relevant variables are {y33, y57, y108}, we have

ψ = y33y57y108 ∨ y33y′57y′108 ∨ y′33y57y′108 ∨ y′33y′57y108.

Note that the parity formula ψ and the random DNF φ each contain t terms of ` literals
each. We describe a straightforward embedding of ψ into φ.

Choose a random bijection between the terms of φ and the terms of ψ, and for each
term, a random bijection between the variables in the term of φ and the literals in the
corresponding term of ψ. If vi is a variable in φ, let f(vi) be the corresponding literal
in ψ. Because the variables in φ are all distinct, f maps exactly t/2 distinct variables of
φ to each literal of ψ.

Extend f arbitrarily to an equi-grouping by randomly dividing the unused variables
in V into groups of size t/2 and mapping each group to a random distinct one of the
unused literals in L. For every assignment a to the variables Y , ψ(a) = φ(af ), so this
construction embeds the parity function ψ into the random monotone DNF formula φ.

Continuing the example of φ and ψ, we could choose f to map v14 and v22 to y33,
v55 and v10 to y′33, also v133 and v266 to y57, v101 and v332 to y′57 and finally, v170
and v507 to y108, v337 and v413 to y′108, though different bijections are permitted. The
unused 500 variables vi are divided arbitrarily into groups of two and each group of two
is mapped to one of the 250 unused literals yj or y′j . An assignment to the variables yj
induces an assignment to the variables vi in which the variables in each group of two
take on the value of the literal they are mapped to.

Note that the uniform distribution U on assignments to Y induces the distribution
Uf on assignments to V , in which groups of t/2 variables are assigned the same value,
the groups corresponding to a literal and its complement receive complementary values,
and groups corresponding to different variables are independent.

3.3 Reduction

We now describe a reduction showing that a learning algorithm A that weakly learns
a random monotone DNF formula φ (over n variables with t terms and ` variables per
term) with respect to an arbitrary distributionD using a polynomial number of statistical
queries to oracle STAT(φ,D) could be used to weakly learn an arbitrary parity function
ψ (over m variables with ` relevant variables) with respect to the uniform distribution
using the same number of statistical queries to oracle STAT(ψ,U).

For the reduction, we randomly choose an equi-grouping g mapping V to L. We
then runAwith variables V , simulating access to a statistical query oracle STAT(φ,Ug),
where φ is a DNF formula that embeds ψ with respect to g. (That is, ψ(a) = φ(ag) for
all assignments a to the variables Y .)

A statistical query (χ, τ) made by A is transformed to (χ′, τ), where

χ′(a, b) = χ(ag, b).

That is, χ′ transforms the assignment a to Y into the assignment ag to V , keeps the label
b, and applies χ. The query (χ′, τ) is asked of the statistical query oracle STAT(ψ,U)



for the parity problem, and the answer is returned as the answer to A’s query (χ, τ).
Even though we do not know a correct function φ embedding ψ, this transformation
allows us to answer the statistical queries of A correctly for some such φ.

When A halts and returns a hypothesis h, the reduction halts and outputs a hypoth-
esis h′(a) = h(ag). That is, the hypothesis h′ transforms an assignment a to Y to the
assignment ag to V and applies h.

3.4 Correctness

Suppose that instead of choosing a random equi-grouping g, we could generate a ran-
dom monotone DNF formula φ, rejecting if it is not read once, and otherwise choosing
an embedding f of ψ into φ as described in the embedding subsection. The resulting
distribution over equi-groupings f would still be uniform. Because φ is read once with
probability 1 − o(1), this means that if A succeeds in weakly learning random mono-
tone DNF formulas, the reduction gives a randomized algorithm to learn with probabil-
ity 1 − o(1) an arbitrary parity function over m variables with ` relevant variables to
the same level of accuracy using the same number of statistical queries with the same
tolerances as A.

The extension to general (non-monotone) DNF formulas is straightforward; a gen-
eral DNF formula with n variables, t terms and ` variables per term is read once with
probability 1 − o(1), and embedding a parity function ψ into a general read once for-
mula just requires mapping literals (rather than variables) over V to literals over Y and
modifying the definition of the induced assignment ag appropriately. Thus we conclude
the following.

Theorem 1. No algorithm can weakly learn random monotone (or general) DNF for-
mulas with n variables, n1/3 terms and log n variables per term with respect to an
arbitrary distribution using a polynomial number of statistical queries.

3.5 Extensions

This technique can also be used to show lower bounds for DNF formulas with more
or fewer terms. If (t`)2 is o(n), then a random DNF with n variables, t terms and `
variables per term will be read once with probability 1 − o(1). If the number of terms
is larger than 2`−1, it can be trimmed by choosing one literal per excess term to fix
to the value 0 so that the term is eliminated under the constructed distribution. If the
number of terms is smaller than 2`−1, we can choose a number of literals per term to
fix to the value 1 so that the term effectively becomes smaller under the constructed
distribution. For example, we could use the same logic to embed parity functions with
Θ(log log(n)) relevant variables (which are still not weakly learnable with a polynomial
number of statistical queries) by using Θ(log(n)) terms.

To handle these cases, instead of just choosing an equi-grouping g from V to L,
the reduction first randomly chooses an appropriate number of variables from V to set
randomly and independently to 0 or 1, and then chooses an equi-grouping on the rest.
The resulting induced distribution on assignments to V is constant on some variables,
and behaves as before on the rest.



4 Random Decision Trees

The reduction for decision trees is slightly more complex than that for DNF formulas:
with high probability the depth k top of a random decision tree of depth 3k will query
all distinct variables, which can be used to embed an arbitrary depth k decision tree by
choosing random paths of length 2k from the boundary nodes to leaf nodes.

4.1 Model

We consider binary decision trees over n variables V = {v1, . . . , vn} of uniform depth
k ≥ 0, where n = 2k. The nodes of the tree are indexed by binary strings of length at
most k, where the empty string is the root and the two children of x are x0 and x1. The
string indexing a node gives the sequence of query answers to reach that node.

A decision tree of depth k is specified by two maps, α : Σ<k → V and β : Σk →
Σ, where α determines the variable queried at each internal node and β determines the
binary label of each leaf. We require that the variables queried along any path in the
tree be distinct. The value of a decision tree on an assignment a mapping V to {0, 1} is
determined by querying the values of the variables indicated by α to reach a leaf of the
tree, whose β value is the desired output.

For a random decision tree of depth k ≥ 1, the values of α are chosen uniformly
at random and the values of β are chosen such that for all x ∈ Σk−1, one of β(x0)
and β(x1) is 0 and the other is 1, where both outcomes have equal probability and the
choices for different x’s are independent. This is one of the models of random decision
trees considered by Jackson and Servedio [6]; results for their other models should be
similar.

4.2 Embedding

We show that an arbitrary decision tree of depth k can be embedded with probability 1−
o(1) in a random decision tree of depth 3k (or, with a bit more work, depth (2+ε)k). Fix
an arbitrary decision tree T = (α, β) of depth k over the variables V = {v1, . . . , vn}.
Let T ′ = (α′, β′) be a random decision tree of depth k′ = 3k with n′ = 2k

′
= n3

variables W = {w1, . . . , wn′}.
For each x ∈ Σk, let y(x) ∈ Σk′−1−k be chosen uniformly at random. That is, for

each internal node x at depth k in T ′, we choose a random extension y(x) of its path
that reaches the parent of a pair of leaves in T ′. Let H ′ be the set of prefixes of strings
xy(x); these are the nodes along any of the n chosen paths.

Define T ′ to be favorable if the map α′ is one-to-one on the domain H ′, that is,
all the variables queried along the chosen paths in T ′ are distinct. T ′ is favorable with
probability 1− o(1) by a union bound, because the set H ′ has O(n log n) elements. We
assume that T ′ is favorable in what follows. The embedding is illustrated in Figures 1
and 2.

We now define a map g from W to V ∪ {0, 1}. If g(wi) = vj we say wi copies vj ,
and if g(wi) = 0 or g(wi) = 1 we say that wi is fixed to the corresponding constant
value. For x ∈ Σ<k, we define g(α′(x)) = α(x), that is, the variable α′(x) copies the
variable α(x). For x ∈ Σk and z a proper prefix of y(x), we define g(α′(xz)) = b
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Fig. 1. The arbitrary decision tree T . Leaves
with output 1 are indicated by double cir-
cles.
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Fig. 2. The subgraph of the embedding tree
T ′ containing a copy of T , the chosen ran-
dom paths, and the correctly chosen out-
puts. T ′ is favorable if all the internal nodes
of this subgraph have distinct variables.

where b ∈ Σ is the unique value such that xzb ∈ H ′, that is, the variable α′(xz) is
fixed to the value necessary to follow the path chosen below x. For x ∈ Σk, we define
g(α′(xy(x))) = b where b ∈ Σ is the unique value such that β′(xy(x)b) = β(x). That
is, the variable α′(xy(x)) is fixed to the value necessary to arrive at the leaf of T ′ with
the same output as T at x. This is possible because β′ takes on 0 and 1 in some order
for the two children of xy(x). At this point, each variable vi in V has been assigned a
distinct copy in W for each occurrence of vi in T , so each variable in V has at most
n − 1 copies in W . We now choose unused variables from W without replacement to
bring each variable in V up to exactly n− 1 copies. Each remaining unused variable in
W is fixed to 0 or 1 randomly and independently.

The mapping g induces a mapping from an assignment a to V to an assignment
ag to W by ag(wj) = a(g(wj)) for all j = 1, . . . , n′. For every assignment a to V ,
the output of T on a is the same as the output of T ′ on ag . Thus, for any distribution
D on assignments a, statistical queries to STAT(T ′, Dg) can be answered by making
statistical queries to STAT(T,D).

4.3 Reduction

Suppose A is an algorithm that weakly learns random log depth decision trees using
statistical queries with respect to an arbitrary distribution. Faced with the problem of
learning an arbitrary depth k decision tree T over the n = 2k variables V with respect to



a distribution D using statistical queries to STAT(T,D), we let k′ = 3k and n′ = n3

and W = {w1, . . . , wn′}. Define the set of suitable reduction mappings to be all g
mapping g from W to V ∪ {0, 1} subject to the condition that |g−1(vi)| = n − 1 for
i = 1, . . . , n, that is, exactly n−1 variables inW are mapped to each variable in V and
the remaining variables inW are mapped to 0 or 1. Choose a random suitable reduction
mapping g.

We run A with the n′ variables W and depth parameter k′, simulating statistical
queries to STAT(T ′, Dg) for some decision tree T ′ of depth k′ over the variables W .
When A makes a statistical query (χ, τ), we define

χ′(a) = χ(ag),

make a statistical query to STAT(T,D) with (χ′, τ) and return the answer to A. When
A halts with output h, we output h′, where h′(a) = h(ag).

4.4 Correctness

The distribution over suitable reduction mappings g would be uniform if we could first
generate a random depth k′ decision tree T ′ and a random choice of paths y(x) from
its nodes at depth k (rejecting if T ′ is not favorable) and then proceed to choose g to
embed T in T ′ as described in the embedding subsection. Because the probability that
we reject T ′ as not favorable is o(1), with probability 1− o(1), A weakly learns a tree
T ′ embedding T , which means that the reduction must weakly learn T . Because log
depth decision trees with n variables can express all parity functions over n variables
with log n relevant variables, our reduction proves the following.

Theorem 2. No algorithm can weakly learn random decision trees with n variables
and depth log n with respect to an arbitrary distribution using a polynomial number of
statistical queries.

5 Random Deterministic Finite Acceptors

The embedding for random DFAs is somewhat more complex. By the results of Trakht-
enbrot and Barzdin, we know that with high probability, if one state of a random DFA
is reachable from another, it is reachable by a path of length O(log n). In order to rep-
resent parity, we embed two trees of O(log n) depth in the machine, but we must also
find paths that return from the leaves of the trees to both their roots, in order to test the
parities of a sequence of variables.

5.1 Model of Random DFAs

Let n be a positive integer and let Q be a finite set of n states with start state q0 ∈ Q.
We consider a standard model of random deterministic finite acceptors, in which the
entries of the transition function δ : Q×Σ → Q and the set of accepting states F ⊆ Q
are chosen uniformly at random.



5.2 Representing Parity

We name variables for the parity problem using strings from a prefix-free set V con-
structed as follows. Let σ : {1, 2, . . .} → Σ∗ be the bijection defined by

σ(1) = ε

σ(2m) = σ(m)0

σ(2m+ 1) = σ(m)1.

Thus σ maps m to its binary representation after the first 1. Let ` = dlog2 ne and let
V = {σ(m) : m ∈ {`, . . . , 2` − 1}} be the set of variables. Note that |V | = ` =
Θ(log2 n).

Our goal is to make a random machine compute a parity function whose relevant
variables are any subset U ⊆ V . To give some intuition, we first describe how to con-
struct a finite state machine that accepts a sequence of variables when the sequence has
an odd number of occurrences of variables from a given set U . As an example, assume
that ` = 6, which gives the set of variables

V = {10, 11, 000, 001, 010, 011}.

Assume that the set of relevant variables is the following.

U = {10, 000, 001}.

The representation we choose for an assignment a : V → {0, 1} is to list (in some
order) the variables v ∈ V such that a(v) = 1. For example, if a assigns 1 to the
variables 10, 11, 000, and 010, one representation of a would be 1011000010.

Given this representation, we construct a finite automaton to accept the strings rep-
resenting assignments with odd parity on the variables in U as follows. Let V ′ be the
set of proper prefixes of strings from V . For each string v′ ∈ V ′ there are states [q0, v′]
and [q1, v

′]. If for some b ∈ Σ both v′ ∈ V ′ and v′b ∈ V ′ then let

δ([q0, v
′], b) = [q0, v

′b] and δ([q1, v′], b) = [q1, v
′b].

Suppose for some b ∈ Σ, v′ ∈ V ′ and vb ∈ V . If v′b ∈ U , that is, v′b is a relevant
variable, we exchange even and odd as follows:

δ([q0, v
′], b) = [q1, ε] and δ([q1, v′], b) = [q0, ε].

If v′b 6∈ U , we do not exchange even and odd:

δ([q0, v
′], b) = [q0, ε] and δ([q1, v′], b) = [q1, ε].

The start state is [q0, ε] and the only accepting state is [q1, ε]. After reading in a sequence
of distinct variables, the machine is in state [q0, ε] if an even number of the variables
read are from U , and in state [q1, ε] if an odd number of them are from U .

The machine constructed by this process for the example values of U and V is
illustrated in Figure 3. Note that on the input string 1011000010 the machine reaches
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 0  1

q1

 0

q1

 1

q0

 0
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 1

q1

 0

q0

 1  0  1
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 0

q0

 1

q1

 0

q1

 1
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 0
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 1

Fig. 3. One idea for a finite state machine to compute the parity of variables U = {10, 000, 001}
from V = {10, 11, 000, 001, 010, 011}. The in-degrees of q0 and q1 are in general too large.

state q0 and rejects, which is correct because in this assignment exactly two of the
variables in U (namely 10 and 000) are set to 1.

An attempt to embed this kind of machine for computing parity into a random finite
state acceptor encounters the problem that the in-degrees of the states [q0, ε] and [q1, ε]
are in general too large. We avoid this problem by changing the input representation to
allow each variable to be followed by a string that prepares the machine to accept the
next variable. Even though each variable may have a different string, the contents and
assignments of these strings do not reveal any information about the relevant variables.

5.3 Embedding and Reduction

We show how to embed a parity computation on the variables V into a random finite
state acceptorM with n states with at least constant probability of success. The process
is illustrated in Figures 4, 5 and 6.

We first choose any state q1 different from the start state q0. We generate a random
finite acceptor M with n states. We think of the structure of M as being revealed to us
in stages. With probability 1/4, we have q0 6∈ F and q1 ∈ F .

Let V ′ = {σ(m) : m ∈ {1, . . . , ` − 1}}. These are all the proper prefixes of
the variables V . Because |V ′| = O(log2 n), with probability 1 − o(1), there are two
non-overlapping trees rooted at q0 and q1, that is, the set of states R = {δ(q, v′) :
q ∈ {q0, q1}, v′ ∈ V ′} has cardinality 2|V ′|. In this case, the values of δ(q, v) for
q ∈ {q0, q1} and v ∈ V are all independent random choices.

For each variable v ∈ V we would ideally like to find a string xv such that xv takes
δ(q0, v) and δ(q1, v) back to the states q0 and q1 (in some order), that is,

{δ(q0, vxv), δ(q1, vxv)} = {q0, q1}.



q0 q1

 0  1  0  1

 0  1  0  1

Fig. 4. The even state is
q0 and the odd state is
q1. With probability 1 −
o(1), there are two non-
overlapping trees with `−1
nodes rooted at q0 and q1.
We don’t yet commit to the
outgoing arcs of the leaves.

q0 q1

 0  1  0  1

 0  1

a b

 0  1

 0

 1

 0

 0

 1

 0

Fig. 5. With constant prob-
ability, a pair (a, b) ∈
Q2 chosen uniformly at
random can reach (q0, q1)
via the same string while
avoiding the trees.

q0 q1

 0  1  0  1

 0  1

a

 1

b

 1

 0  1

 1  1

 0

 1

 0

 0

 1

 0

Fig. 6. Now we choose the
outgoing arcs correspond-
ing to variable 011. With
constant probability, there
is a path back to (q0, q1).
The solid arcs signify a rel-
evant variable; the dashed
ones, an irrelevant variable.
These cases are equally
likely and independent of
the string to prepare for an-
other variable.

Depending on the order, the variable v is or is not relevant. Though we cannot achieve
this proper functioning for all variables, we can do so for a constant fraction of the
variables.

We first show that with constant probability, for two random states (a, b) ∈ Q2,
there is a short string x such that {δ(a, x), δ(b, x)} = {q0, q1} and neither path touches
the states in R. The latter stipulation is important because it enables a bijection that
swaps the values of δ(q0, v) and δ(q1, v), which allows us to conclude that the return
strings xv don’t give away the relevant variables.

The proof of existence of the short string is as follows. Let (a, b) ∈ Q2 be chosen
uniformly at random, assume n is even, and let X = {σ(m) : m ∈ {n2/4, . . . , n2/2−
1}}. We show that if x ∈ X is chosen uniformly at random, then with probability
(2− o(1))/n2, we have {δ(a, x), δ(b, x)} = {q0, q1}, that is, x is good. Also, if y ∈ X
is chosen independently, then the probability that both x and y are good is (4−o(1))/n4.



By inclusion-exclusion, the probability that exactly one string in X is good is at least

|X|(2− o(1))/n2 − 2

(
|X|
2

)
(4− o(1))/n4 = (1− o(1))/2− 2

(
n2/4

2

)
(4− o(1))/n4

= (1− o(1))/2− (1− o(1))/4
= (1− o(1))/4.

The key observation is that the success event of x and the success event of y are very
close to being independent Bernoulli trials with success probability 2/n2. The strings
under consideration have length about 2 log n. If just before the final letter of each string
we have reached from a and b two different states whose outward transitions have not
been committed in any way, the success probabilities will be independent and exactly
2/n2. Of course, something may go wrong before then: we may touch a state in R or
have the paths loop or touch one another. With only O(log2 n) states to avoid however,
this event is probability o(1).

Finally, we observe that with constant probability, there will be log2 n/8 variables
that function properly. We can embed any parity function over these variables, which is
enough to make nΘ(logn) parity functions, ensuring that a superpolynomial number of
statistical queries are needed in expectation [2].

For the reduction, an assignment a to log2 n/8 variables is transformed to a string
containing the list of strings vxv for those variables v on which a takes the value 1. Note
that these strings are all of length O(log3 n). If desired, the strings could be padded by
repeating the variables they contain an odd number of times.

Theorem 3. No algorithm can weakly learn random deterministic finite acceptors with
n states with respect to an arbitrary distribution on strings of length at most Θ(log3 n)
using a polynomial number of statistical queries.

6 Discussion

As described in Section 1, there are polynomial time algorithms to learn certain classes
of random decision trees and random DNF formulas with respect to the uniform dis-
tribution, and these algorithms can be implemented with statistical queries. However,
it is open whether random deterministic finite acceptors of nc states can be learned in
polynomial time with respect to the uniform distribution on strings of length n.
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