
Journal of Machine Learning Research ?? (2009) ???–??? Submitted 1/09; Revised 6/09; Published ?/??

Learning Acyclic Probabilistic Circuits Using Test Paths

Dana Angluin dana.angluin@yale.edu
James Aspnes james.aspnes@yale.edu
Department of Computer Science
Yale University

Jiang Chen criver@gmail.com
Yahoo! Inc.
701 First Avenue
Sunnyvale, CA 94086

David Eisenstat eisenstatdavid@gmail.com

Lev Reyzin lev.reyzin@yale.edu

Department of Computer Science

Yale University

Editor: Rocco Servedio

Abstract

We define a model of learning probabilistic acyclic circuits using value injection queries, in
which fixed values are assigned to an arbitrary subset of the wires and the value on the
single output wire is observed. We adapt the approach of using test paths from the Circuit
Builder algorithm (Angluin et al., 2009) to show that there is a polynomial time algorithm
that uses value injection queries to learn acyclic Boolean probabilistic circuits of constant
fan-in and log depth. We establish upper and lower bounds on the attenuation factor for
general and transitively reduced Boolean probabilistic circuits of test paths versus general
experiments. We give computational evidence that a polynomial time learning algorithm
using general value injection experiments may not do much better than one using test
paths. For probabilistic circuits with alphabets of size three or greater, we show that the
test path lemmas (Angluin et al., 2009, 2008b) fail utterly. To overcome this obstacle, we
introduce function injection queries, in which the values on a wire may be mapped to other
values rather than just to themselves or constants, and prove a generalized test path lemma
for this case.

Keywords: nonadaptive learning algorithms, probabilistic circuits, causal Bayesian net-
works, value injection queries, test paths

1. Introduction

Probabilistic networks are used as models in a variety of domains, for example, gene interac-
tion networks, social networks and causal reasoning. In a binary model of gene interaction,
the state of each gene is either active or inactive, and the state of each gene is determined
as a function of the states of some number of other genes, its inputs. In a probabilistic

c©2009 Dana Angluin and James Aspnes and Jiang Chen and David Eisenstat and Lev Reyzin.

Angluin, Aspnes, Chen, Eisenstat and Reyzin

variant of the model, the activation function specifies, for each possible combination of the
states of the inputs, the probability that the gene will be active (Friedman et al., 2000).
In the independent cascade model of social networks, the state of each agent is active or
inactive and for each pair (u, v) of agents, there is a probability that the activation of u will
cause v to become active. Kempe, Kleinberg, and Tardos (2003, 2005) study the problem of
maximizing influence in this and related models of social networks. In a Bayesian network
there is an acyclic directed graph and a joint probability distribution over the node values
such that the joint distribution is the product of each of the marginal distributions for each
node given the values of the parents (in-neighbors) of the node.

A fundamental question is how much we can infer about the properties and structure
of such networks from observing and experimenting with their behaviors. Prior research
gives evidence from cryptography that there may be no polynomial time algorithm to learn
Boolean functions represented by acyclic circuits of constant fan-in and depth O(log n)
when we can set only the inputs of the circuit and observe only the output (Angluin and
Kharitonov, 1995). In this paper we consider a different setting, value injection queries,
in which we can fix the values on any subset of wires in the target circuit, but still only
observe the output of the circuit.

The concept of value injection queries was inspired by models of gene suppression and
gene overexpression in the study of gene interaction networks (Akutsu et al., 2003; Ideker
et al., 2000) and was introduced by Angluin et al. (2009). In a causal Bayesian network
there is an additional action do(X = x) that forces a node X to take on a value x (Pearl,
2000). A value injection query may also be viewed as a set of such actions, one for each
wire fixed to a value.

Angluin et al. (2009) investigate the learnability of deterministic circuits using value
injection queries and behavioral equivalence queries. Polynomial time learning algorithms
using just value injection queries are given for two classes of acyclic circuits. Circuit Builder
uses value injection queries to learn acyclic deterministic circuits with constant-size alpha-
bets, constant fan-in and depth O(log n) up to behavioral equivalence in polynomial time.
Another algorithm is given that learns constant-depth acyclic Boolean circuits with NOT
gates and unbounded fan-in AND, OR, NAND and NOR gates up to behavioral equivalence
in polynomial time using value injection queries. Negative results include an exponential
lower bound on the number of value injection queries to learn acyclic Boolean circuits of
unbounded depth and unbounded fan-in, and the NP-hardness of learning acyclic Boolean
circuits of unbounded depth and constant fan-in using value injection queries.

In extending these results to analog circuits, Angluin et al. (2008b) consider circuits with
polynomial-size alphabets. They give evidence of the computational hardness of learning
acyclic circuits over a polynomial-size alphabet even if the depth is restricted to O(log n),
motivating structural restrictions on the graphs of the circuits to achieve polynomial time
learnability. They give the Distinguishing Paths Algorithm, which uses value injection
queries and learns acyclic deterministic circuits that are transitively reduced and have
polynomial-size alphabets, constant fan-in and unbounded depth up to behavioral equiva-
lence in polynomial time. They also give a generalization to circuits with a constant bound
on shortcut width.

In this paper we seek to extend some of these positive learnability results to the case
of acyclic probabilistic circuits. The key technique in the previous work has been the idea

2

Learning Acyclic Probabilistic Circuits Using Test Paths

of a test path for an arbitrary wire w in the circuit. Informally speaking, a test path is
a directed path of wires from w to the output wire in which each wire is an input of the
next wire on the path, and the other (non-path) inputs of wires on the path are fixed to
constant values, thus isolating the wires along the path from the rest of the circuit. Ideally,
the choice of constant values is made in such a way as to maximize the effect on the output
of the circuit of changing w from one value to another. A test path thus functions as a
kind of “microscope” for viewing the effects of assigning different values to the wire w. The
primary focus of this paper is to understand the properties of test paths in probabilistic
circuits, and the extent to which they can be used to give polynomial time algorithms for
learning probabilistic acyclic circuits.

In Section 2 we formally define our model of acyclic probabilistic circuits, value injection
queries and distribution injection queries, behavioral equivalence, and the learning problem
that we consider. In Section 3 we establish some basic results about probabilistic circuits
and value and distribution injection experiments. In Section 4 we review the test path
lemma used in previous work to establish the ability of a learner to infer circuit behavior
from a small subset of experiments and show that it fails utterly in probabilistic circuits
with alphabet size greater than two. However, for Boolean probabilistic circuits, we show
that the test path lemma holds with an attenuation factor that depends on the structure
of the circuit. (Lemma 10 treats general acyclic circuits and Corollary 11 specializes the
bound to transitively reduced circuits.) In Section 5 we apply the test path lemma in the
Boolean case to adapt the Circuit Builder algorithm (Angluin et al., 2009) to find using
value injection queries, with high probability, in time polynomial in n and 1/ε, a circuit that
is ε-behaviorally equivalent to a target acyclic Boolean probabilistic circuit of size n with
constant fan-in and depth bounded by a constant times log n. In Section 6, we consider
lower bounds on the attenuation of paths; Theorem 16 shows that our bound is tight for
transitively reduced circuits and Theorem 18 gives a lower bound for the case of general
acyclic circuits. In Section 7 we give evidence that polynomial time algorithms using general
value injection experiments may not do significantly better than algorithms that use test
paths. In Section 8 we introduce a stronger kind of query, a function injection query,
and show that test paths with function injections overcome the limitations of test paths for
circuits with alphabets of size greater than two.

2. Model

We extend the circuit learning model (Angluin et al., 2008b, 2009) to probabilistic gates.
An unusual feature of this model is that circuits do not have distinguished inputs—since
the learning algorithm seeks to predict the output behavior of value injection experiments
that override the values on an arbitrary subset of wires, each wire is a potential input.

2.1 Probabilistic Circuits

A probabilistic circuit C of size n ≥ 1 has n wires, of which one is the distinguished
output wire. We call the set of C’s wires W , and these wires take values in a finite
alphabet Σ with |Σ| ≥ 2. If Σ = {0, 1}, then C is Boolean. The value on a wire is
ordinarily determined by the output of an associated probabilistic gate, whose distribution
is a function of the values on other wires.

3

Angluin, Aspnes, Chen, Eisenstat and Reyzin

Formally, a value distribution D is a probability distribution over Σ, that is, a map
from Σ to the real interval [0, 1] such that

∑
σ∈ΣD(σ) = 1. The probability of σ is D(σ).

The support of D is the set of values σ ∈ Σ such that D(σ) > 0. When the support of D
is a singleton {σ}, we say D is deterministic. For a nonempty set of values S ⊆ Σ, the
uniform distribution U(S) is the distribution such that U(S)(σ) = [σ ∈ S]/|S|, that is,
has value 0 on σ 6∈ S and 1/|S| for σ ∈ S.

A k-ary probabilistic gate function f maps each k-tuple of values (σ1, . . . , σk) ∈ Σk

to a value distribution. When C is Boolean, we can specify f by a truth table giving
the expected value for each Boolean vector of inputs. A probabilistic gate function is
deterministic if it maps k-tuples to deterministic value distributions only.

A probabilistic gate g of fan-in k pairs a k-ary probabilistic gate function f with a
k-tuple (w1, . . . , wk) ∈W k of input wires. The gate g is deterministic if its gate function
f is deterministic. When k = 0, the gate g has no inputs, and we can regard it as specifying
a value distribution, or, when C is Boolean, a biased coin flip.

A probabilistic circuit C maps wires to probabilistic gates. C is deterministic if all
of its gates are deterministic. The fan-in of C is the maximum fan-in over C’s gates. The
circuit graph of C has a node for each wire in W and a directed edge (u,w) if u is one of
the input wires of the gate associated with w. It is important to distinguish between wires
in the circuit and edges in the circuit graph. For example, if wire u is an input of wires v
and w, then there will be two directed edges, (u, v) and (u,w), in the circuit graph.

Wire w is reachable from wire u if there is a directed path from u to w in the circuit
graph. A wire is relevant if the output wire is reachable from it. The depth of a wire w
is the number of edges in the longest simple path from w to the output wire in the circuit
graph. The depth of the circuit is the maximum depth of any relevant wire. The circuit
is acyclic if the circuit graph contains no directed cycles. The circuit is transitively
reduced if its circuit graph is transitively reduced, that is, if it contains no edge (u,w)
such that there is a directed path of length at least two from u to w. In this paper we
assume all circuits are acyclic.

2.2 Experiments

In an experiment some wires are constrained to be particular values or value distributions
and the other wires are left free to take on values according to their gate functions and the
values of their input wires. The behavior of a circuit consists of its responses to all possible
experiments. For probabilistic circuits we consider both value injection experiments and
distribution injection experiments.

A distribution injection experiment e is a function with domain W that maps
each wire w to a special symbol ∗ or to a value distribution. A value injection experi-
ment e is a distribution injection experiment for which every value distribution assigned is
deterministic—that is, always generates the same symbol. To simplify notation, we think
of a value injection experiment as a mapping from W to (Σ ∪ {∗}). If e is either kind of
experiment, we say that e leaves w free if e(w) = ∗; otherwise we say that e constrains w
to e(w). If e(w) is a single symbol, then we say e fixes w to e(w).

We define a partial ordering ≤ on the set containing ∗ and all value distributions D as
follows: D ≤ ∗ for every value distribution D, and for two value distributions, D1 ≤ D2 if

4

Learning Acyclic Probabilistic Circuits Using Test Paths

the support of D1 is a subset of the support of D2. This ordering is extended to experiments
on the same set of wires W as follows: e1 ≤ e2 if for every w ∈ W , e1(w) ≤ e2(w). The
intuitive meaning of e1 ≤ e2 is that e1 is at least as constraining as e2 for every wire.

If e is any experiment, w is a wire, and a is ∗ or an element of Σ or a value distribution,
then the experiment e|w=a is defined to be the experiment e′ such that e′(w) = a and
e′(u) = e(u) for all u ∈ W such that u 6= w. If e is any experiment then a free path in e
is a path in the circuit graph containing only wires w that are free in e.

2.3 Behavior

Let C be a probabilistic circuit. Then a distribution injection experiment e determines
a joint distribution over assignments of elements of Σ to all of the wires of the circuit, as
follows. If wire w is constrained then w is randomly and independently assigned a value in Σ
drawn according to the value distribution e(w); in the case of a value injection experiment,
this just assigns a fixed element of Σ to w. If wire w is free and has probabilistic gate
function f , and its inputs u1, . . . , uk have been assigned the values σ1, . . . , σk, then w is
randomly and independently assigned a value from Σ according to the value distribution
determined by the gate function on these inputs, that is, according to the value distribution
f(σ1, . . . , σk).

Constrained gates and gates of fan-in zero give the base cases for the above recursive
definition, which assigns an element of Σ to every wire because the circuit is acyclic. Let
C(e, w) denote the (marginal) value distribution of the assignments of values to w for the
above process. The output distribution of the circuit, denoted C(e), is the distribution
C(e, z), where z is the output wire of the circuit. The behavior of a circuit C is the
function that maps value injection experiments e to output distributions C(e).

We note that even when the circuit is Boolean and the only non-deterministic gates
are uniform coin flips, the problem of exactly computing C(e) is #P-hard because we can
arrange for C(e) to be the fraction of assignments satisfying a given Boolean formula.

2.4 Example: C1

We give an example of a simple Boolean probabilistic circuit, which we also refer to later.
The 2-input averaging gate function A(b1, b2) outputs 1 with probability (b1 + b2)/2.
Thus, if both inputs are 0, the output is deterministically 0, if both inputs are 1, the
output is deterministically 1, and if its inputs disagree, the output is an unbiased coin flip,
U({0, 1}). Another characterization of the averaging gate function A is that it randomly
and equiprobably selects one of its inputs and copies it to the output.

We define a circuit C1 of 4 wires as follows: w4 = A(w2, w3), w3 = w1, w2 = w1, and
w1 = U({0, 1}). The output wire is w4. C1 is depicted in Figure 1.

To illustrate the behavior of this circuit, we consider two value injection experiments.
Define the experiment e to leave every wire in C1 free, that is, e(wi) = ∗ for 1 ≤ i ≤ 4.
Given e, we construct one random outcome as follows. The wire w1 is assigned a value as
the result of an unbiased coin flip—say it is assigned 0. Then the values assigned to w2

and w3 are determined because they are each the output of an identity gate with w1 as
input: both are 0. Finally, because both its input wires have been assigned values, w4 can
be assigned a value according to A(0, 0), which is deterministically 0. It is easy to see that

5

Angluin, Aspnes, Chen, Eisenstat and Reyzin

w1 = U({0,1})

w2 = w1 w3 = w1

w4 = A(w2,w3)

Figure 1: The circuit C1; w4 is the output wire.

this is one of two possible outcomes for experiment e; either all wires are assigned 0 or all
wires are assigned 1, and these each occur with probability 1/2. The output distribution
C1(e) is just an unbiased coin flip.

Now consider experiment e′ = e|w2=1 that fixes w2 to 1 and leaves the other wires free.
Once again, the value of w1 is determined by a coin flip—say it is assigned 0. Since w2 is
fixed to 1, that is its assignment. Wire w3 is free, and is therefore assigned the value of w1,
that is 0. Now the inputs of w4 have been assigned values, so we consider A(1, 0), which
randomly and equiprobably selects 0 or 1. If, instead, the coin flip for w1 had returned 1,
all wires would be assigned 1. There are three possible assignments to (w1, w2, w3, w4) for
experiment e′: (1, 1, 1, 1) with probability 1/2, (0, 1, 0, 0) with probability 1/4 and (0, 1, 0, 1)
with probability 1/4. The output distribution C1(e′) is a biased coin flip that is 1 with
probability 3/4.

2.5 Behavioral Equivalence

Two circuits C and C ′ are behaviorally equivalent if they have the same set of wires,
the same output wire and the same behavior, that is, for every value injection experiment
e, C(e) = C ′(e). We also need a concept of approximate equivalence. The (statistical)
distance between value distributions D and D′ is d(D,D′) = (1/2)

∑
σ |D(σ) − D′(σ)|,

which takes values in [0, 1]. Note that when D and D′ are deterministic, d(D,D′) is 0
if D = D′ and 1 otherwise. For ε ≥ 0, C is ε-behaviorally equivalent to C ′ if they
contain the same wires and the same output wire, and for every value injection experiment
e, d(C(e), C ′(e)) ≤ ε, where d is the statistical distance between value distributions.

In Lemma 2 we show that the behavioral equivalence of C and C ′ implies C(e) = C ′(e)
for all distribution injection experiments as well. However, behavioral equivalence is not
sufficient to guarantee that two circuits have the same topology; even when all the gates
are Boolean, deterministic and relevant, the circuit graph of the target circuit may not be
uniquely determined by its behavior (Angluin et al., 2009).

6

Learning Acyclic Probabilistic Circuits Using Test Paths

2.6 Queries

The learning algorithm gets information about the target circuit by specifying a value
injection experiment e and observing the element of Σ assigned to the output wire. Such an
action is termed a value injection query, abbreviated VIQ. A value injection query does
not return complete information about the value distribution C(e), but instead returns an
element of Σ selected according to the distribution C(e). Thus, in order to approximate the
distribution C(e), the learner must repeatedly make value injection queries with experiment
e. In this case, the goal of learning is approximate behavioral equivalence.

2.7 The Learning Problem

The learning problem is ε-approximate learning: by making value injection queries to
a target circuit C drawn from a known class of probabilistic circuits, the goal is to find a
circuit C ′ that is ε-behaviorally equivalent to C. The inputs to the learning algorithm are
the names of the wires in C, the name of the output wire and positive numbers ε and δ,
where the learning algorithm is required to succeed with probability at least (1− δ).

We note that acyclic deterministic circuits are a subclass of acyclic probabilistic circuits.
If the target circuit C is deterministic and we learn a probabilistic circuit C ′ that is 1/3-
behaviorally equivalent to C, then we can compute the behavior of C on any value-injection
experiment e with high probability by sampling the behavior of C ′(e). The negative results
concerning learning deterministic circuits using value injection queries shown by Angluin
et al. (2009) carry over to learning probabilistic circuits. In particular, for ε = 1/3 and
δ = 1/2, with no bound on fan-in or depth, the worst-case expected number of value
injection queries necessary to learn acyclic probabilistic Boolean circuits is exponential,
while with constant fan-in and no bound on depth, no polynomial time algorithm can learn
acyclic probabilistic Boolean circuits if NP is not equal to BPP.

3. Preliminary Results

In this section we establish some basic results about probabilistic circuits, value injection
experiments and distribution injection experiments. The reader may choose to skip this
section and return to it as needed for proofs in subsequent sections.

We first note that if C is a probabilistic circuit, e is a distribution injection experiment
and either e(w) is a value distribution or e deterministically fixes all the input wires of
w, then there is a value distribution D such that the value of w in C(e) is determined
by a random choice according to D, independent of the values chosen for any other wires.
We make systematic use of this observation to reduce the number of experiments under
consideration.

We start by considering two circuits C1 and C2 over the same wires, and distribution
injection experiments e1 and e2 that agree on the distribution assigned to a wire w and that
show a certain distance between C1(e1) and C2(e2). The following lemma says that we may
modify e1 and e2 to fix w to a particular value σ ∈ Σ while preserving (or increasing) the
distance they show.

Lemma 1 Let C1 and C2 be probabilistic circuits on wires W with the same output wire,
let w ∈W be a wire, let D be a value distribution, and let e1 and e2 be distribution injection

7

Angluin, Aspnes, Chen, Eisenstat and Reyzin

experiments such that e1(w) = e2(w) = D. Then there exists a value σ ∈ support(D) such
that

d(C1(e1|w=σ), C2(e2|w=σ)) ≥ d(C1(e1), C2(e2)).

Proof We have

d(C1(e1), C2(e2)) =
1

2

∑
τ∈Σ

∣∣∣C1(e1)(τ)− C2(e2)(τ)
∣∣∣

=
1

2

∑
τ∈Σ

∣∣∣∣∣∣
∑
ρ∈Σ

C1(e1|w=ρ)(τ)D(ρ)−
∑
ρ∈Σ

C2(e2|w=ρ)(τ)D(ρ)

∣∣∣∣∣∣
≤ 1

2

∑
ρ∈Σ

D(ρ)
∑
τ∈Σ

∣∣∣C1(e1|w=ρ)(τ)− C2(e2|w=ρ)(τ)
∣∣∣

=
∑
ρ∈Σ

D(ρ)d(C(e1|w=ρ), C(e2|w=ρ)),

by the triangle inequality. Let

σ = arg max
ρ∈support(D)

d(C(e1|w=ρ), C(e2|w=ρ)),

so that

d(C(e1|w=σ), C(e2|w=σ)) ≥ d(C(e1), C(e2))

by an averaging argument.

By successively replacing each value distribution by a particular value, we may convert
a distribution injection experiment that shows a certain distance between two circuits into
a value injection experiment that shows at least that distance between the two circuits.

Lemma 2 Let C1 and C2 be probabilistic circuits on wires W with the same output wire and
let e be a distribution injection experiment. Then there exists a value injection experiment
e′ ≤ e such that

d(C1(e′), C2(e′)) ≥ d(C1(e), C2(e)).

Proof By induction on |V |, where V ⊆ W is the set of wires that e constrains to distri-
butions that are not deterministic. If |V | > 0, then let w ∈ V . By Lemma 1, there exists a
value σ ∈ Σ such that

d(C1(e|w=σ), C2(e|w=σ)) ≥ d(C1(e), C2(e)).

Since e|w=σ constrains one fewer wire to a nonconstant distribution, the existence of e′

follows from the inductive hypothesis.

Thus, value injection experiments suffice to establish approximate behavioral equivalence
with respect to distribution injection experiments.

8

Learning Acyclic Probabilistic Circuits Using Test Paths

Corollary 3 If circuits C1 and C2 are ε-behaviorally equivalent with respect to value injec-
tion experiments, then C1 and C2 are ε-behaviorally equivalent with respect to distribution
injection experiments.

Suppose that C is a probabilistic circuit and e1 and e2 are distribution injection exper-
iments. For each wire w, we say that e1 and e2 agree on w if either

• e1 and e2 constrain w to the same distribution, or

• w is free in e1 and e2, and e1 and e2 agree on all of w’s inputs.

It is clear that if e1 and e2 agree on a wire w, then the marginal distributions of w in e1

and e2 are identical, that is, C(e1, w) = C(e2, w).

Lemma 4 Let C be a probabilistic circuit on wires W and let e1 and e2 be distribution
injection experiments that agree on wires V ⊆ W . Then there exist distribution injection
experiments e′1 ≤ e1 and e′2 ≤ e2 such that for each wire w ∈ V , there exists a value σ ∈ Σ
such that e′1(w) = e′2(w) = σ, and

d(C(e′1), C(e′2)) ≥ d(C(e1), C(e2)).

Proof By induction on the number of unfixed wires w ∈ V . If there is such a wire,
choose v by the acyclicity of the circuit to be one that is not reachable from the others. If
e1(v) = e2(v) = ∗, then e1 and e2 agree on all of v’s inputs, and by the choice of v, all of
v’s inputs are fixed. As such, we may assume without loss of generality that e1 and e2 in
fact constrain v to the distribution D = C(e1, v) = C(e2, v). By Lemma 1, there exists a
value σ ∈ support(D) such that

d(C(e1|v=σ), C(e2|v=σ)) ≥ d(C(e1), C(e2)).

The existence of e′1 and e′2 follows from the inductive hypothesis.

The following lemma shows that constraining a wire w does not change the behavior of
wires that are not reachable from w.

Lemma 5 Let C be a probabilistic circuit on wires W , let e be a distribution injection
experiment, let w ∈ W be a wire free in e, and let D be a value distribution. Then e and
e|w=D agree on all wires u ∈W such that there is no free path from w to u in e.

Proof If u is constrained, then the conclusion follows. Otherwise, let u ∈ W be a wire
free in e such that there is no free path from w to u in e. Then no input v of u has a free
path from w to v in e. We proceed by induction on the length of the longest path to u. If
this length is zero, then u does not have any inputs. Otherwise, the inductive hypothesis
applies to all of u’s inputs, on which e and e|w=D then must agree. It follows that they also
agree on u.

9

Angluin, Aspnes, Chen, Eisenstat and Reyzin

If we consider the distance between the behavior of a circuit with a wire constrained
to two different value distributions, the following lemma allows us to move to a situation
in which the wire is constrained to two different value distributions whose supports are
disjoint. In the special case of Boolean circuits, the property of disjoint supports means
that the resulting value distributions are deterministic. Later we see that this fundamentally
distinguishes between alphabet size two and larger alphabets.

Lemma 6 Let C be a probabilistic circuit on wires W , let w ∈ W be a wire, and let
D1, D2 be value distributions. There exist value distributions D′1, D

′
2 with support(D′1) ∩

support(D′2) = ∅ such that for all experiments e,

d(C(e|w=D1), C(e|w=D2)) = d(D1, D2)d(C(e|w=D′
1
), C(e|w=D′

2
)).

Proof Intuitively, we couple D1 and D2 so that D1 = D2 as often as possible and let D̂i be
the distribution of Di given that D1 6= D2. It can be shown that D̂1 and D̂2 have disjoint
support. Formally, we have

d(C(e|w=D1), C(e|w=D2)) =
1

2

∑
σ∈Σ

∣∣∣C(e|w=D1)(σ)− C(e|w=D2)(σ)
∣∣∣

=
1

2

∑
σ∈Σ

∣∣∣∣∣∑
τ∈Σ

C(e|w=τ)(σ)(D1(τ)−D2(τ))

∣∣∣∣∣ .
If we let

D̂1(τ) = D1(τ)−min(D1(τ), D2(τ))

D̂2(τ) = D2(τ)−min(D1(τ), D2(τ)),

then

d(C(e|w=D1), C(e|w=D2)) =
1

2

∑
σ∈Σ

∣∣∣∣∣∑
τ∈Σ

C(e|w=τ)(σ)(D̂1(τ)− D̂2(τ))

∣∣∣∣∣ .
Since

∑
τ∈Σ D̂1(τ) = 1−

∑
τ∈Σ min(D1(τ), D2(τ)) and likewise for D2,

d(D1, D2) =
1

2

∑
τ∈Σ

∣∣∣D1(τ)−D2(τ)
∣∣∣

=
1

2

∑
τ∈Σ

∣∣∣D̂1(τ)− D̂2(τ)
∣∣∣

=
∑
τ∈Σ

D̂1(τ) =
∑
τ∈Σ

D̂2(τ).

If d(D1, D2) > 0, then the distributions D′1 and D′2 where

D′1(τ) = D̂1(τ)/d(D1, D2)

D′2(τ) = D̂2(τ)/d(D1, D2)

satisfy the requisite properties. Otherwise, any two distributions with disjoint support will
do.

10

Learning Acyclic Probabilistic Circuits Using Test Paths

4. Test Paths

The concept of a test path has been central in previous work on learning deterministic
circuits by means of value injection queries (Angluin et al., 2008b, 2009). A test path for
a wire w, or w-test path, is a value injection experiment in which the free gates form a
directed path in the circuit graph from w to the output wire. All the other wires in the
circuit are fixed; this includes the inputs of w. A side wire with respect to a test path p
is a wire fixed by p that is input to a free wire in p.

As an example, suppose that Σ = {0, 1} and the target circuit has a circuit graph
as shown in Figure 2. There are four directed paths from w1 to the output wire: w1w5,
w1w3w5, w1w2w4w5 and w1w3w4w5. A w1-test path is a value injection experiment that
sets the wires of one of these paths to ∗ and the other wires to 0 or 1, for example, ∗011∗ or
∗∗0∗∗. For the test path ∗011∗, the side wires are w3 and w4, while for the test path ∗∗0∗∗
the side wire is w3. The value injection experiments ∗∗∗∗∗ and ∗01∗∗ are not test paths.

w1

w2 w3

w5

w4

Figure 2: A circuit graph; w5 is the output wire.

A test path may help the learning algorithm determine the effects of assigning different
values to the wire w. The test path lemmas (Angluin et al., 2008b, 2009) may be re-stated
as follows.

Lemma 7 Let C be a deterministic circuit. If for some value injection experiment e, wire
w free in e and alphabet symbols σ and τ it is the case that

C(p|w=σ) = C(p|w=τ)

for every test path p ≤ e then also

C(e|w=σ) = C(e|w=τ).

Nontrivial complications arise in attempting to carry over this test path lemma to general
probabilistic circuits, as we now show. The following lemma shows that for alphabets of size

11

Angluin, Aspnes, Chen, Eisenstat and Reyzin

at least three, there are transitively reduced probabilistic circuits for which the test-path
lemma fails completely.

Lemma 8 If |Σ| ≥ 3, there exists a probabilistic circuit C, value injection experiment e,
wire w free in e and alphabet symbols σ and τ such that although for every test path p ≤ e for
w, d(C(p|w=σ), C(p|w=τ)) = 0, it is nevertheless the case that d(C(e|w=σ), C(e|w=τ)) = 1/2.

Proof Assume that Σ = {0, 1, 2}, and define probabilistic gate functions T and X as
follows.

T (0) = T (1) = U({0, 1})
T (2) = 2

X(b1, b2) = b1 ⊕ b2 if b1, b2 ∈ {0, 1}
X(b1, b2) = U({0, 1}) if b1 = 2 or b2 = 2,

where ⊕ is sum modulo 2. The gate function T flips a coin on input 0 or 1, and passes 2
through unaltered. The gate function X is exclusive or if neither input is 2, and a coin flip
otherwise.

The circuit C has 5 wires, connected as in Figure 3. The output wire is w5; note that
C is transitively reduced.

w1 = U({0,1})

w2 = T(w1)

w3 = w2 w4 = w2

w5 = X(w3,w4)

Figure 3: The circuit C; w5 is the output wire.

Consider the experiment e that leaves all the wires free. In this experiment, we have
C(e|w1=0) = C(e|w1=1) = 0 because w2 is a coin flip and w5 is the exclusive or of two copies
of the coin flip. On the other hand, C(e|w1=2) = U({0, 1}) because w4 = w3 = w2 = 2 and
w5 is therefore a coin flip. Thus d(C(e|w1=0), C(e|w1=2)) = 1/2.

However, the only test paths for w1 fix w3 and leave all other wires free, or fix w4 and
leave all other wires free, and the two cases are symmetric. If w3 is fixed to any value and
all other wires are free, then w5 is a coin flip when w1 = 2. If w3 is fixed to 2 and all

12

Learning Acyclic Probabilistic Circuits Using Test Paths

other wires are free, then w5 is also a coin flip. If w3 is fixed to b ∈ {0, 1} and all other
wires are free, then when w1 ∈ {0, 1}, w2 is a coin flip, and w5 is the exclusive or of b and
that coin flip, that is, w5 is also coin flip. Hence, for any test path p ≤ e for w1, we have
C(p|w1=0) = C(p|w1=2) = U({0, 1}) and d(C(pw1=0), C(pw1=2)) = 0.

For alphabets Σ of size larger than 3, we can treat three of the symbols as 0, 1 and 2 in
the above construction, and the other symbols as “tilt,” where each function outputs a tilt
value if any of its inputs is a tilt value.

4.1 A Bound for Boolean Probabilistic Circuits

Surprisingly, the case of |Σ| = 2 is different; for Boolean probabilistic circuits there is a
useful quantitative relationship between the difference exposed by an arbitrary experiment
e and the differences exposed by test paths p ≤ e. The bound we give depends on the
structure of directed paths on free wires in e.

Let e be an experiment and w a wire. Define Π(e, w) to be the set of all directed paths
from w to the output wire on free wires in e. Let S(e) be the set of wires that originate a
free shortcut, that is, the set of free wires w such that there exists a path p ∈ Π(e, w) with
two free wires to which w is an input. Define

κ(e, w) =
∑

p∈Π(e,w)

2|p∩S(e)|.

Thus, κ(e, w) is the sum over paths in Π(e, w) of 2 raised to the number of wires on the
path that originate free shortcuts in e. If there are no wires that originate free shortcuts in
e, then this is just the number of free paths in e. As an example, if the target circuit has
the circuit graph shown in Figure 2 and the experiment e leaves all wires free then Π(e, w1)
contains the four paths w1w5, w1w3w5, w1w2w4w5 and w1w3w4w5, S(e) = {w1, w3}, and
κ(e, w) is 2 + 4 + 2 + 4 = 12.

The following technical lemma gives a useful recurrence for κ(e, w).

Lemma 9 Let C be a probabilistic circuit, e be a distribution injection experiment, w and
u be free wires where w is an input to u, and D0 be a value distribution. Let β = 2 if
w ∈ S(e) and β = 1 otherwise. Then

κ(e, w) = κ(e|u=D0 , w) + κ(e|w=1, u) · β.

Proof The first term of the sum counts paths that don’t contain u, and the second counts
paths that do. Let e′ = e|u=D0 and e′′ = e|w=1. We have

κ(e, w) =
∑

p∈Π(e,w)

2|p∩S(e)|

=
∑

p∈Π(e,w)
u6∈p

2|p∩S(e)| +
∑

p∈Π(e,w)
u∈p

2|p∩S(e)|

=
∑

p∈Π(e′,w)

2|p∩S(e′)| +
∑

p∈Π(e′′,u)

2|p∩S(e′′)|β

= κ(e′, w) + κ(e′′, u) · β,

13

Angluin, Aspnes, Chen, Eisenstat and Reyzin

since each path p 3 u from w corresponds to the path p \ {w} from u.

Next is the key lemma relating the difference exposed by e to the differences exposed by
paths p ≤ e for Boolean probabilistic circuits.

Lemma 10 Let C be a Boolean probabilistic circuit, e be a distribution injection experi-
ment, w be a wire free in e and D1, D2 be value distributions. If there exists ε ≥ 0 such that
for all w-test paths p ≤ e,

d(C(p|w=D1), C(p|w=D2)) ≤ ε,

then
d(C(e|w=D1), C(e|w=D2)) ≤ κ(e, w) · ε.

Proof By induction on φ(e), the number of free wires in e. By Lemma 6, assume that
support(D1) ∩ support(D2) = ∅. The critical feature of the Boolean case is that it follows
that D1 = 0 and D2 = 1 without loss of generality—it is important to the following proof
that D1 and D2 be deterministic.

If φ(e) = 1, then either
d(C(e|w=0), C(e|w=1)) = 0,

or w is the output, e is a w-test path, and κ(e, w) = 1. Otherwise, the inductive hypothesis
is that the lemma holds for all experiments e′ with φ(e′) < φ(e).

Except for w, the experiments e|w=0 and e|w=1 agree on all constrained wires, so by
Lemmas 4 and 5, assume without loss of generality that every wire with no free path from
w is in fact fixed. Since C is acyclic, there exists a free wire u 6= w whose only unfixed
input is w. Let g be the gate assigned by C to u and let B0 = g(e|w=0) and B1 = g(e|w=1),
so that

C(e|w=0) = C(e|w=0,u=B0)

C(e|w=1) = C(e|w=1,u=B1).

By the triangle inequality,

d(C(e|w=0), C(e|w=1)) ≤ d(C(e|w=0,u=B0), C(e|w=1,u=B0))

+ d(C(e|w=1,u=B0), C(e|w=1,u=B1)).

Letting e′ = e|u=B0 , any test path p ≤ e′ also satisfies p ≤ e since e′ ≤ e. The experiment
e′ has one fewer free wire, as u is free in e, so using the inductive hypothesis, we can bound
the first term of the sum by κ(e′, w) · ε. We now derive a bound on u-test paths so that the
inductive hypothesis applies to the second term as well. Let β = 2 if w ∈ S(e) and β = 1
otherwise. Let e′′ = e|w=1 and suppose p ≤ e′′ is a u-test path. Then

d(C(p|u=B0), C(p|u=B1))

≤ d(C(p|w=1,u=B0), C(p|w=0,u=B0)) + d(C(p|w=0,u=B0), C(p|w=1,u=B1))

[by the triangle inequality]

= d(C(p|w=1,u=B0), C(p|w=0,u=B0)) + d(C(p|w=0,u=∗), C(p|w=1,u=∗))

[by the definitions of B0 and B1].

14

Learning Acyclic Probabilistic Circuits Using Test Paths

Since w is an input to u, both p|w=∗,u=B0 and p|w=∗,u=∗ are w-test paths. Therefore, both
terms of the sum are bounded by ε, and the first is nonzero only if w is an input to some
free wire in p other than u. It follows that

d(C(p|u=B0), C(p|u=B1)) ≤ βε,

and thus that

d(C(e′′|u=0), C(e′′|u=1)) ≤ κ(e′′, u) · βε,

so by Lemma 9,

d(C(e|w=0), C(e|w=1)) ≤ κ(e′, w) · ε+ κ(e′′, u) · βε
= κ(e, w) · ε.

In the case of transitively reduced circuits, S(e) = ∅, and κ(e, w) = π(e, w), where
π(e, w) = |Π(e, w)|, the number of directed paths on free wires in e from w to the output
wire.

Corollary 11 Let C be a transitively reduced Boolean probabilistic circuit, e be a distribu-
tion injection experiment, and w be a wire free in e. If there exists ε ≥ 0 such that for all
w-test paths p ≤ e,

d(C(p|w=0), C(p|w=1)) ≤ ε,

then

d(C(e|w=0), C(e|w=1)) ≤ π(e, w) · ε.

5. Learning Boolean Probabilistic Circuits

The amount of attenuation given by Lemma 10 allows us to adapt the Circuit Builder
algorithm (Angluin et al., 2009) to learn Boolean probabilistic circuits with constant fan-in
and log depth in polynomial time. For this class of circuits, the attenuation factor κ(e, w)
is bounded by a polynomial in n.

Theorem 12 Given constants c and k there is a nonadaptive learning algorithm that with
probability at least (1−δ) successfully ε-approximately learns any Boolean probabilistic circuit
with n wires, gates of fan-in at most k and depth at most c log n using value injection queries
in time bounded by a polynomial in n, 1/ε and log(1/δ).

The rest of the section is devoted to proving this theorem. Let the target circuit be C
with Σ = {0, 1} and let positive constants δ, ε, k and c be given such that the fan-in of C
is bounded by k and the depth of C is bounded by c log n. For such a circuit, π(e, w) is
bounded above by kc logn, so the quantity κ(e, w) is bounded above by

κ(n) = kc logn · 2c logn = nc(log k+1) = nO(1).

15

Angluin, Aspnes, Chen, Eisenstat and Reyzin

We now describe our Probabilistic Circuit Builder algorithm (PCB). PCB is nonadap-
tive: first it computes a set U of value injection experiments such that every test path is
equivalent to some experiment in U . It then repeats each value injection query e ∈ U enough
times that with probability at least (1−δ), the distribution C(e) is estimated with sufficient
accuracy for every e ∈ U . Finally, it uses these estimates to build a circuit C ′ by repeatedly
adding a sufficiently accurate gate all of whose inputs are in the partially constructed circuit.
If the estimates of C(e) are all sufficiently accurate, then C ′ is ε-behaviorally equivalent to
C.

5.1 Constructing U

In choosing the experiments U , the goal is that for every potential test path, U includes
an equivalent experiment. The structure of the circuit, however, is not known a priori, a
difficulty that we overcome by the same method as used by Angluin et al. (2009). Let U∗
be a universal set of value injection experiments such that for every set of kc log n wires and
every assignment of symbols from Σ ∪ {∗} to those wires, some experiment e ∈ U∗ agrees
with the values assigned to those wires. There is a deterministic construction of such a set
U∗ of size

2O(kc logn) log n = nO(kc)

in time polynomial in its size (Angluin et al., 2009). (For intuition, a set of nO(kc) indepen-
dent random uniform assignments of ∗, 0 and 1 to the wires has this property with high
probability.) For every wire w and test path p for w, there is an experiment in U∗ that leaves
the path wires of p free and fixes the side wires of p to their values in p. Consequently, p
and this experiment agree on the output wire. In order to have experiments in which each
free wire is also set to 0 and 1, for b = 0, 1 let Ub contain every experiment e|w=b such that
e ∈ U∗ and w is free in e. The final set of experiments is U = U∗ ∪ U0 ∪ U1.

5.2 Estimating C(e) for e ∈ U

For each e ∈ U , PCB repeatedly makes a value injection query with e to estimate the value
distribution C(e); let Ĉ(e) denote this estimate. By Hoeffding’s bound, we have that

m = O((nκ(n)/ε)2 log(|U |/δ))

trials per experiment e suffice to guarantee that with probability at least 1−δ, for all e ∈ U ,

d(C(e), Ĉ(e)) ≤ ε/(4nκ(n)). (1)

Let e ∈ U∗ be a value injection experiment, w be a wire that e leaves free, and D be a value
distribution. We define

Ĉ(e|w=D) =
∑
σ∈Σ

D(σ)Ĉ(e|w=σ).

Note that this is computed from the values of Ĉ(e|w=σ) and does not require new experi-
ments.

16

Learning Acyclic Probabilistic Circuits Using Test Paths

If (1) holds for all e ∈ U , then we have

d(C(e|w=D), Ĉ(e|w=D)) ≤
∑
σ∈Σ

D(σ)d(C(e|w=σ), Ĉ(e|w=σ))

≤ ε/(4nκ(n)). (2)

5.3 Building the circuit C ′

PCB builds the circuit C ′ one gate at a time. Let W ′ denote the set of wires of C ′ that have
already been assigned a gate by PCB; initially W ′ is empty. While W ′ 6= W , PCB attempts
to add another gate to C ′ by searching for a wire w ∈ (W −W ′) and a probabilistic gate g′

all of whose inputs are in W ′ such that for each experiment e ∈ U∗ that leaves w free and
fixes all inputs of g′,

d(Ĉ(e), Ĉ(e|w=g′(e))) ≤ 2ε/(4nκ(n)).

If no such gate can be found or W ′ = W , PCB outputs C ′ and halts. We will later show
that a gate can be found as long as W 6= W ′.

The search for g′ iterates over every wire w ∈ (W − W ′) and every choice of an r-
tuple of distinct wires w1, . . . , wr from W ′ as the inputs of w, where 0 ≤ r ≤ k. For each
such choice, PCB attempts to define a probabilistic gate function f as follows. For each
(σ1, . . . , σr) ∈ Σr, PCB seeks a number x ∈ [0, 1] such that if Dx is the distribution that is
1 with probability x and 0 with probability (1− x) then

d(Ĉ(e), Ĉ(e|w=Dx)) ≤ 2ε/(4nκ(n))

for all experiments e ∈ U∗ that leave w free and fix wi to σi for i = 1, . . . , r. Since the left
hand side is a convex function of x, every such e constrains the possible values of x to an
interval, and any x in the intersection of [0, 1] and the intervals for all such e suffices. If the
intersection is empty, then the attempt to define f fails; otherwise, f(σ1, . . . , σr) is defined
to be Dx. If PCB succeeds in defining f for all possible r-tuples (σ1, . . . , σr), then the gate
g′ with inputs w1, . . . , wr and probabilistic gate function f is assigned to w.

5.4 An Illustration

For some intuition about the operation of PCB, consider the probabilistic Boolean circuit
shown in Figure 4. Wires w1 and w2 are determined by random coin flips, w3 is the AND
of w1 and w2, w4 is the OR of w1 and w2, and w5 is determined by the 3-input averaging
gate applied to w1, w3 and w4. The table shows the probability that w5 = 1 for a selected
set of value injection experiments.

Suppose that these experiments are contained in U when PCB attempts to add the first
gate to C ′. Of course, PCB will only have repeated sampling estimates of these probabilities,
but suppose for a moment that the exact values were available. Because W ′ is empty, the
first gate added must have no inputs and must be determined by a coin flip that is 1 with
some probability x. In this group of experiments, there are two constraints for wire w1 for the
possible values of x. Experiments 1, 2 and 3 give the constraint (1/6)(1−x)+(5/6)x = 1/2,
which implies x = 1/2, and experiments 6, 7 and 8 give the constraint 0(1−x)+(2/3)x = 1/3,

17

Angluin, Aspnes, Chen, Eisenstat and Reyzin

w1 = U({0,1}) w2 = U({0,1})

w3 = w1 /\ w2 w4 = w1 \/ w2

w5 = A(w1,w3,w4)
Experiment Pr[w5 = 1]
1. * * * * * 1/2
2. 0 * * * * 1/6
3. 1 * * * * 5/6
4. * * 0 * * 5/12
5. * * 1 * * 3/4
6. * 1 * 0 * 1/3
7. 0 1 * 0 * 0
8. 1 1 * 0 * 2/3
9. * 1 0 0 * 1/6

10. * 1 1 0 * 1/2

Figure 4: A Boolean circuit with output wire w5, and some of its behavior.

which also implies x = 1/2, consistent with the gate computing w1 in the target circuit.
There are also two constraints on the possible values of x for the wire w3. Experiments
1, 4 and 5 give the constraint (5/12)(1 − x) + (3/4)x = 1/2, which implies x = 1/4, and
experiments 6, 9 and 10 give the constraint (1/6)(1 − x) + (1/2)x = 1/3, which implies
x = 1/2. Thus there is no consistent value of x that would allow the first gate to be
chosen for wire w3. Rather than exact values, PCB considers intervals determined by error
tolerances, but when these are small enough, the constraint intervals for w3 will not overlap,
and PCB will not choose the first gate for wire w3.

5.5 Correctness

With probability at least (1 − δ), the estimates Ĉ(e) satisfy (1) for all e ∈ U . We now
assume that the estimates satisfy these bounds and show that PCB successfully builds a
circuit C ′ that is ε-behaviorally equivalent to C.

We first establish two lemmas connecting gates, paths and experiments. Given a Boolean
probabilistic circuit C and a probabilistic gate g, g is η-correct for wire w with respect
to C if for every value injection experiment e that fixes the input wires for g we have
d(C(e), C(e|w=g(e))) ≤ η, where g(e) denotes the value distribution determined by g when
its inputs are fixed as in e. Recall that φ(e) denotes the number of free wires in experiment
e, and therefore φ(e) ≤ n for all e.

Lemma 13 Let C and C ′ be probabilistic circuits on wires W , and let e be a distribution
injection experiment. If for every wire w, the gate for w in C ′ is η-correct for w with respect
to C, then

d(C(e), C ′(e)) ≤ φ(e) · η.

Proof By induction on φ(e), the number of free wires in e. If φ(e) = 0, then e constrains
the output wire, and trivially, d(C(e), C ′(e)) = 0. Otherwise, the inductive hypothesis is
that

d(C(e′), C ′(e′)) ≤ φ(e′) · η

18

Learning Acyclic Probabilistic Circuits Using Test Paths

for all experiments e′ with fewer than φ(e) free gates.
By Lemma 2, assume that e is in fact a value injection experiment. Since C ′ is acyclic,

there exists a free wire w in e such that the inputs to w in C ′ are fixed in e to some k-tuple
(σ1, . . . , σk) ∈ Σk. Let f denote the probabilistic gate function for w in C ′, and let D denote
the value distribution f(σ1, . . . , σk). Then we have C ′(e) = C ′(e|w=D), and

d(C(e), C ′(e)) ≤ d(C(e), C(e|w=D)) + d(C(e|w=D), C ′(e|w=D))

≤ η + (φ(e)− 1) · η
= φ(e) · η

by the inductive hypothesis and the fact that f is η-correct for w.

Corollary 14 Let C and C ′ be probabilistic circuits on wires W where |W | = n. If for
every wire w, the gate g for w in C ′ is η-correct for w with respect to C, then

d(C(e), C ′(e)) ≤ n · η.

Proof By the definition of approximate behavioral equivalence and the bound φ(e) ≤ n.

Next we show that test paths are sufficient to determine whether a gate is η-correct for
a wire in C.

Lemma 15 Let C be a Boolean probabilistic circuit, w a wire and g′ a probabilistic gate.
If for every test path p for w that fixes all the inputs of g′, d(C(p), C(p|w=g′(p))) ≤ η/Kw,
where Kw is the maximum value of κ(e, w) for C over all experiments e, then g′ is η-correct
for w with respect to C.

Proof Let g be the actual gate that C assigns to w. Let e be a value injection experiment
that fixes every input of g′. Then e may not fix all of g’s inputs, but because C is acyclic,
g’s inputs are not reachable from w. By Lemmas 4 and 5, there exists an experiment e′ ≤ e
that fixes g’s inputs, with

d(C(e′), C(e′|w=g′(e′))) ≥ d(C(e), C(e|w=g′(e))).

Since e′ fixes all of g’s inputs, C(e′) = C(e′|w=g(e′)). It is given that for all test paths p that
fix all inputs of g′ that

d(C(p|w=g(p)), C(p|w=g′(p))) ≤ η/Kw,

so it follows by Lemma 10 that

d(C(e′|w=g(e′)), C(e′|w=g′(e′))) ≤ κ(e′, w) · η/Kw ≤ η,

and g′ is η-correct for w.

19

Angluin, Aspnes, Chen, Eisenstat and Reyzin

To prove that PCB constructs a circuit C ′ that is ε-behaviorally equivalent to the target
circuit C, we show that for each wire w ∈W , PCB assigns a gate that is ε/n-correct for w
in C.

Assume that W ′ 6= W , that is, that not all wires have been assigned gates, and consider
PCB as it attempts to add another gate to C ′. PCB looks for a wire w ∈ (W −W ′) and
probabilistic gate g′ ∈ G with all of its inputs in W ′ such that for each experiment e ∈ U∗
that leaves w free and fixes all inputs of g′,

d(Ĉ(e), Ĉ(e|w=g′(e))) ≤ 2ε/(4nκ(n)).

If this search succeeds, then by (1),

d(C(e), Ĉ(e)) ≤ ε/(4nκ(n))d(Ĉ(e|w=g′(e)), C(e|w=g′(e))) ≤ ε/(4nκ(n)),

and thus by the triangle inequality we have

d(C(e|w=g′(e)), C(e)) ≤ ε/(nκ(n)),

It follows by Lemma 15 and the choice of κ(n) that g′ is ε/n-correct for w in C.
To see that the search for a gate will succeed as long as W ′ 6= W , we note that because

C is acyclic, there is some wire w ∈ (W −W ′) such that all of w’s inputs in C are in W ′.
Let g denote the gate assigned by C to w, with inputs w1, . . . , wr and probabilistic gate
function f . By the existence of g, there is at least one feasible gate-wire assignment for
PCB to make, ensuring the continued progress of PCB. Consider any experiment e ∈ U∗
that leaves w free and fixes the inputs of g to (σ1, . . . , σr). Let D be the value distribution
f(σ1, . . . , σr). Then C(e) = C(e|w=D) and by (1) and (2) we have

d(Ĉ(e), C(e)) ≤ ε/(4nκ(n))

d(C(e|w=D), Ĉ(e|w=D)) ≤ ε/(4nκ(n)),

so by the triangle inequality,

d(Ĉ(e), Ĉ(e|w=D)) ≤ 2ε/(4nκ(n)).

Therefore, PCB will continue to make progress until it has assigned a gate to every wire in
W , and every such gate will be ε/n-correct for its wire in C, which means that C ′ will be
ε-behaviorally equivalent to C.

5.6 Running time

To bound the running time of PCB we argue as follows. The set U of experiments is of
cardinality nO(kc) and can be constructed in time polynomial in its size. To estimate C(e),
each experiment in U is repeated

O((nκ(n)/ε)2 log(|U |/δ))

times; recall that κ(n) = O(nc(log k+1)). PCB then chooses a gate for a wire n times. For
each choice, it must at worst iterate over O(n) wires in (W −W ′), over all O(nk) choices of
k or fewer input wires from W ′, over all |Σ|k assignments of values to the input wires, and
all experiments in U . Thus the running time of PCB is polynomial in n, 1/ε and 1/δ.

20

Learning Acyclic Probabilistic Circuits Using Test Paths

6. Lower Bounds on Path Attenuation

The path attenuation bound κ(n) is a significant factor in the running time of the PCB
algorithm. In this section we consider lower bounds on path attenuation for Boolean prob-
abilistic circuits. The following theorem shows that the bound of π(e, w) for transitively
reduced Boolean probabilistic circuits in Corollary 11 is tight infinitely often.

Theorem 16 There is an infinite set of transitively reduced probabilistic Boolean circuits
such that for each circuit C in the family, there exists a value injection experiment e and a
wire w free in e such that

d(C(e|w=0), C(ew=1)) = 1

and for every test path p for w we have

d(C(p|w=0), C(p|w=1)) = 1/π(e, w).

Proof For each positive integer `, define the circuit C` to be a chain of ` copies of the
circuit C1 in Figure 1 with wire w4 of one copy identified with wire w1 of the next copy.
More formally, the 3` + 1 wires are w0,4 and wi,j for i = 1, . . . , ` and j = 2, 3, 4. The
output wire is w`,4. The wire w0,4 has no inputs and is determined by an unbiased coin
flip, that is, U({0, 1}). The wires wi,2 and wi,3 are the outputs of deterministic identity
gates with input wi−1,4. The wire wi,4 = A(wi,2, wi,3) is the result of applying the two-input
averaging probabilistic gate function A to the wires wi,2 and wi,3. The circuit C3 is depicted
in Figure 5.

To understand the operation of this circuit in response to a value injection experiment
e, we may view each averaging gate as choosing one of its inputs to copy to its output.
Starting at the output wire, this determines a path back to the first wire whose value has
been fixed, or to the wire w0,4 (which has no inputs) and the output of the circuit is the
value of the wire so reached.

Define experiment e to leave all of the wires free. Let w denote the wire w0,4. Clearly
there are 2` paths on free gates in e from w to the output gate, that is, π(w, e) = 2`. For ex-
periment e every possible path starts at wire w and we have C(e|w=0) = 0 and C(e|w=1) = 1,
so d(C(e|w=0), C(e|w=1)) = 1. However, any test path p for w must fix one of the wires wi,2
or wi,3 for each i = 1, . . . , `. Thus, there is exactly one path that leads back to wire w, and
this path is the one chosen by the averaging gates with probability 1/2`. Thus the result
for any test path p for w is d(C(p|w=0), C(p|w=1)) = 1/2` = 1/π(e, w).

This lower bound also holds for general transitively reduced circuit topologies, as follows.
(Note that this result was incorrectly stated in the preliminary version of this paper (Angluin
et al., 2008a).)

Theorem 17 Let G be a transitively reduced acyclic directed graph with a designated output
node z that is reachable from every node. For each node w there exists a Boolean probabilistic
circuit C whose circuit graph is G with output wire z such that for every value injection
experiment e that leaves w free and for every test path p ≤ e for wire w we have

d(C(e|w=1), C(e|w=0)) ≥ π(e, w) · d(C(p|w=1), C(p|w=0)).

21

Angluin, Aspnes, Chen, Eisenstat and Reyzin

w04 = U({0,1})

w12 = w04 w13 = w04

w14 = A(w12,w13)

w22 = w14 w23 = w14

w24 = A(w22,w23)

w32 = w24 w33 = w24

w34 = A(w32,w33)

Figure 5: The circuit C3; w3,4 is the output wire.

22

Learning Acyclic Probabilistic Circuits Using Test Paths

Proof Let w be given. To construct C, each node v of G is assigned a probabilistic gate
whose inputs are the in-neighbors of v in G, as follows. For each node v, let P (v) denote
the number of distinct directed paths from w to z that include node v, and for each edge
(u, v), let P (u, v) denote the number of distinct directed paths from w to z that include
edge (u, v). If there are no paths from w to z through v (that is, P (v) = 0) then we let the
probabilistic gate function for v be the constant function 0. The probabilistic gate function
for w is a coin flip, U({0, 1}).

Otherwise, if node v has inputs u1, . . . , ur then it is assigned the probabilistic gate
function specified by

Av(b1, . . . , br) =
r∑
i=1

bi · P (ui, v)/P (v)

This generalizes the two-input averaging gate A, weighting input ui by the fraction of paths
from w to z passing through v that also pass through ui. We may view Av as performing
a random weighted selection of one of its inputs to copy to its output. The weights have
been chosen so that each directed path from w to z is selected with probability 1/P (w).

Let e be any value injection experiment that leaves w free. If there is no path on free
wires in e from w to the output, then π(e, w) = 0, and the bound in the conclusion of the
lemma holds trivially. Otherwise, the output of the circuit in response to e is determined
by tracing from the output wire, following the choices of the averaging gates, until either
the first wire fixed by e, or w, is reached. Thus

d(C(e|w=1), C(e|w=0)) = π(e, w)/P (w),

because there are π(e, w) paths from w to the output wire in e. Let p ≤ e be any test path
for w; now there is just one choice of path that leads back to w, so

d(C(p|w=1), C(p|w=0)) = 1/P (w),

establishing the conclusion of the lemma.

Can the general bound in Lemma 10 be improved to the bound for transitively reduced
circuits in Corollary 11? The following example shows that the better bound is in general
not attainable if the circuit is not transitively reduced. It gives a family of circuits of depth
2` for which the worst-case ratio of the differences shown for w by an experiment e and the
best path for w is (5/4)`π(e, w).

Theorem 18 There exists an infinite set of Boolean probabilistic circuits D1, D2, . . . such
that for each ` there exists a value injection experiment e and a wire w free in e such that
π(e, w) = 4` and

d(D`(e|w=0), D`(e|w=1)) = (5/7)`,

but for any test path p for w,

d(D`(p|w=0), D`(p|w=1)) = (1/7)`.

23

Angluin, Aspnes, Chen, Eisenstat and Reyzin

Proof We first define a Boolean probabilistic circuit D1 and then connect ` copies of it
in series to get D`. The wires of D1 are w1, . . . , w5. They are connected as in Figure 6;
the output wire is w5. Note that the edge (w1, w5) means that the circuit graph is not
transitively reduced. The gate function G is defined by giving its expected value as a

w1 = U({0,1})

w2 = w1 w3 = w1 w4 = w1

w5 = G(w1,w2,w3,w4)

Figure 6: The circuit D1; w5 is the output wire.

function of its inputs:

E[G(w1, w2, w3, w4)] = ((1− w1) + 2w2 + 2w3 + 2w4)/7.

Let e be the experiment that leaves all five wires free. It is clear that

d(D1(e|w1=0), D1(e|w1=1)) = 5/7.

We now show that for any test path p for w1,

d(D1(p|w1=0), D1(p|w1=1)) = 1/7.

The possible test paths p for w1 either fix all of w2, w3, w4 or all but one of them. Thus, as we
change from w1 = 0 to w1 = 1 in such a test path, the assignments to wires (w1, w2, w3, w4)
change in one of four possible ways:

(0, b2, b3, b4) to (1, b2, b3, b4)

(0, 0, b3, b4) to (1, 1, b3, b4)

(0, b2, 0, b4) to (1, b2, 1, b4)

(0, b2, b3, 0) to (1, b2, b3, 1)

Checking each of these possible changes against the definition of G, we see that each change
produces a difference of 1/7, as claimed. (This example can be modified to give a difference
of 1 versus 1/5.) Thus, setting w = w1, the circuit D1 gives the base case of the claim in
the lemma.

To construct D`, we take ` copies of D1 and identify wire w5 in one copy with wire w1

in the next copy, making the wire w5 of the final copy the output wire of the whole circuit.
Let w denote the wire w1 in the first such copy. Then π(e, w) = 4` and

d(D`(e|w=0), D`(ew=1)) = (5/7)`.

24

Learning Acyclic Probabilistic Circuits Using Test Paths

For any test path p, the signal is attenuated by a factor of 1/7 for each level, and we have

d(D`(p|w=0), D`(p|w=1)) = 1/7`.

This construction can be generalized to k+1 wires for any odd k+1, which increases the
attenuation. In the base circuit there are k paths and an attenuation factor of 1/(2k − 3),
and the worst-case ratio of differences for an experiment and its test paths in D` approaches
2`π(e, w) as k goes to infinity.

7. Exponential Dependence on Depth

The bounds on path attenuation show that test paths may be much less informative than
general value injection experiments, resulting in the exponential dependence of the number
of experiments and the running time of PCB on the depth of the target circuit. It is natural
to ask whether we might do better by using selected general experiments. In this section, we
give computational evidence to the contrary. The following result contrasts with the case of
deterministic circuits, where the Distinguishing Paths algorithm uses value injection queries
to learn arbitrary transitively reduced acyclic deterministic circuits of constant fan-in over
polynomial size alphabets in polynomial time (Angluin et al., 2008b).

Theorem 19 If BPP 6= NP and k ≥ 4 then there is no polynomial time algorithm using
value injection queries that approximately learns all acyclic transitively reduced Boolean
probabilistic circuits with fan-in bounded by k.

Proof Suppose L is a polynomial time algorithm that approximately learns the behavior of
every transitively reduced acyclic Boolean probabilistic circuit of fan-in bounded by 4 using
value injection queries. The hard computational problem we consider is the following: given
a satisfiable 3-CNF formula φ over the variables x1, . . . , xn with clauses c1, . . . , cm, find an
assignment to the variables that satisfies significantly more than seven-eights of the clauses
of the formula. Finding such an assignment is NP-hard by a result of H̊astad (2001). We
show how to transform the 3-CNF formula φ into a pair of transitively reduced circuits C0

and C1 with maximum fan-in 4 such that value injection experiments show a difference that
is exponentially small in the depth of the circuits unless we can find a variable assignment
that satisfies significantly more than seven-eighths of the clauses of the formula.

The efficiency of our construction depends on the existence of a family of graphs with
an expansion property. Specifically, there exists a constant α < 1 such that for sufficiently
large m, there exists a directed graph Gm on m nodes with constant out-degree 3 such
that the second largest eigenvalue λ2 of the transition matrix for a random walk on Gm
satisfies λ2 ≤ α. Such a family can be constructed by the probabilistic method and explicit
constructions are also known; these are surveyed by Hoory, Linial, and Wigderson (2006).
Let r be the smallest integer such that αr ≤ 1/40.

Let ` be a positive integer. The two circuits C0 and C1 differ only in their default
assignments to a subset of their wires, so we describe their common structure as follows.
The circuit consists of a stack of ` repetitions of a block consisting of r expander layers

25

Angluin, Aspnes, Chen, Eisenstat and Reyzin

Gadget layer

Expander layer

gIn1 gIn2

x1

gOut1 = gIn1 /\ c1

gIn3

x2

gOut2 = gIn2 /\ c2

gIn4

x3

gOut3 = gIn3 /\ c3

x4

gOut4 = gIn4 /\ c4

eIn1 = gOut1 eIn2 = gOut2 eIn3 = gOut3 eIn4 = gOut4

eOut1 = A(...) eOut2 = A(...) eOut3 = A(...) eOut4 = A(...)

Figure 7: A block with r = 1 for the Boolean formula c1∧c2∧c3∧c4, where c1 = x2∨x3∨x4

and c2 = x1 ∨ x3 ∨ x4 and c3 = x1 ∨ x2 ∨ x4 and c4 = x1 ∨ x2 ∨ x3.

above one gadget layer for a total depth of (2r+ 1)`. Figure 7 illustrates a block consisting
of one expander layer (r = 1) above a gadget layer. Recall that x1, . . . , xn are the variables
of φ and c1, . . . , cm are the clauses of φ.

A gadget layer has three types of wires: inputs gIn1, . . . , gInm, variables x1, . . . , xn,
and outputs gOut1, . . . , gOutm. The input wire gInj of each gadget layer except the initial
one is identified with the corresponding output wire eOutj of the expander layer just below
it. The variable wires xi of each gadget layer have no inputs and default to the constant 0.
Each output wire gOutj has four inputs: the corresponding gadget input wire gInj and the
three variable wires for the variables of the clause cj of φ. Its gate function computes the
conjunction of gInj and the value of the clause cj given its three variable values.

Thus, if the learner sets the variable wires xi in a gadget layer according to a satisfying
assignment of φ, the signals propagate from the gadget inputs gInj to their corresponding
outputs gOutj with perfect fidelity. Otherwise, any unsatisfied clause blocks the signal for
the corresponding output.

An expander layer averages the outputs of the layer below to be the inputs for the
layer above, according to the expander graph Gm. Each input eInj of an expander layer is
set equal to the corresponding output of the gadget or expander layer immediately below
it. The three inputs to eOutj are eInk for the three out-neighbors k of j in the expander
graph Gm. The gate function for each eOutj is the three-input averaging gate A(x, y, z),
which is 1 with probability (x+y+ z)/3. The output of the whole circuit is the first output
wire of the final (topmost) expander layer.

26

Learning Acyclic Probabilistic Circuits Using Test Paths

The initial inputs are the input wires gInj of the initial gadget layer. They have no
inputs; for the circuit C0 they are all assigned the default value 0, and for the circuit C1

they are all assigned the default value 1. Note that C0 and C1 are transitively reduced and
have a maximum fan-in of 4.

The challenge for the learner is to determine which of C0 and C1 is the target circuit. If
a value injection experiment succeeds in setting the variable wires in every gadget layer to
(possibly different) satisfying assignments for the formula φ and leaves all other wires free,
then the output of C0 is 0 and the output of C1 is 1. If not all the clauses of φ are satisfied,
then this distance is reduced.

Intuitively, the learner’s strategy must be to fix the variable wires in each gadget layer
to prevent the signal from the initial inputs from getting blocked; fixing the input or output
wires of gadget or expander layers would not help, because they would then have the same
value regardless of their inputs. Without a good variable assignment, however, the signal
strength drops by a constant factor for each layer, as we now show.

Let e be a value injection experiment. The experiment e induces an assignment to the
variables of φ for each gadget layer, either by fixing the value of each variable wire or letting
it default to 0. The effect of an averaging gate is to select one of its inputs at random and
copy the value of that input to the output. Thus, the output of the circuit for experiment
e is in effect determined by a random walk backward from the output wire until the walk
reaches a wire whose value is fixed by e (and the output is the fixed value), or a gadget
layer output wire corresponding to an unsatisfied clause (and the output is 0), or an initial
input wire (and the output is the value of that wire.) Suppose that for each gadget layer e
encodes a variable assignment that satisfies at most (9/10)m of the clauses of φ. We show
that the probability that the random walk hits an initial input wire is bounded above by
(39/40)`

√
m.

Without loss of generality we may assume that e fixes no wires other than variable wires
and initial input wires, because any other fixed wires reduce the probability of reaching an
initial input. For i = 1, . . . , `, let Wi be the m×m diagonal matrix with 1s for each satisfied
clause in the ith gadget layer and 0s for each unsatisfied clause. Let B be the transition
matrix for an r-step random walk on Gm and let e1 = (1, 0, . . . , 0). The probabilities of the
random walk hitting the initial inputs are given by the vector e1BW`BW`−1 · BW2BW1.
By the following argument, for all i and vectors v, we have ‖vBWi‖ ≤ (39/40)‖v‖.

Write v = cu + w, where c is a scalar and u = (1, . . . , 1) and w is a vector such that
u ⊥ w. Then u is an eigenvector of B with eigenvalue 1 and multiplying w by B shrinks
its length to at most the second eigenvalue of B times its original length. By Pythagoras,
‖cu‖ ≤ ‖v‖ and ‖w‖ ≤ ‖v‖. We have vBWi = (cu + w)BWi. On one hand, ‖cuBWi‖ =
‖cuWi‖ ≤

√
9/10‖cu‖ ≤ (19/20)‖v‖. On the other hand, ‖wB‖ ≤ (1/40)‖w‖ ≤ (1/40)‖v‖,

because the second eigenvalue of B is no larger than 1/40, and ‖wBWi‖ ≤ (1/40)‖v‖,
because Wi does not increase the L2 norm. The resulting (39/40)` bound on the L2 norm
of the probability vector gives a bound of (39/40)`

√
m on the L1 norm, which is an upper

bound on the probability that any initial input is reached.

Suppose the learning algorithm L runs in time f(N, 1/ε, 1/δ), for some nondecreasing
polynomial f , where N is the number of wires in the target circuit. Let N(`) denote the
number of wires in C0 (or C1) as a function of the number ` of blocks in the stack. Then

27

Angluin, Aspnes, Chen, Eisenstat and Reyzin

N(`) = O(`(n+ rm)). We choose ` sufficiently large that

((39/40)`
√
m)f(N(`), 4, 4) < 1/4,

clearly N(`) is bounded by a polynomial in m and n.

We randomly and equiprobably choose the target circuit C to be C0 or C1 and simulate
L with target circuit C and ε = δ = 1/4. When L makes a value injection experiment e,
we check whether any of the induced variable assignments of e satisfies more than (9/10)m
clauses of φ. If so, we output the assignment and halt. Otherwise, we use a random walk
from the output wire in the circuit C to give an output for e. If no experiment e satisfies
more than (9/10)m of the clauses of φ, then the probability that any of them reaches an
initial input in C is less than 1/4. If none of them reaches an initial input, then L cannot
distinguish between C0 and C1, and must output a circuit that is not 1/4-approximately
behaviorally equivalent to C with probability at least 3/8 > 1/4, violating the requirements
of approximate learning.

We conclude that if BPP 6= NP, any polynomial time learning algorithm requires in
expectation exponentially many queries in ` to learn the default settings of the initial inputs
and therefore, PCB is within a polynomial of optimal.

8. Non-Boolean Circuits Revisited

The sharp contrast in results for transitively reduced circuits with alphabet size at least
three, for which test paths may show no difference (Lemma 8) and those with alphabet
size two, for which test paths must show a significant difference (Lemma 10) motivate us
to consider a generalization of the kinds of experiments we consider, to function injection
experiments. This generalization allows us to extend the results of Lemma 10 to non-
Boolean alphabets.

In a value injection experiment, each wire is either fixed to a constant value or left
free. In a function injection experiment for a wire w, these possibilities are expanded to
permit a transformation of the value that the wire w would take if it were left free. As
an example, consider a transformation in which the values that w could attain are linearly
ordered and all values below a certain threshold are mapped to the minimum value and
all other values are mapped to the maximum value. It is conceivable that this kind of
transformation could be feasible in some domains; in any case, the theoretical consequences
are quite interesting. We first give a general definition of function injection, but in the
results below we are primarily concerned with 2-partitions, that is, transformations that
are like the above example in that they partition the values into at most two blocks and
map each block to a fixed element of the block.

An alphabet transformation is a function f that maps symbols to distributions
over symbols. An alphabet transformation is deterministic if it assigns only deterministic
distributions, in which case we think of it as a map from symbols to symbols. A deterministic
alphabet transformation f is a k-partition if there exists a partition of Σ into at most k
disjoint nonempty sets Σi such that for each i there exists σi ∈ Σi such that f(Σi) = {σi}.
Note that if k1 ≤ k2, every k1-partition is also a k2-partition.

28

Learning Acyclic Probabilistic Circuits Using Test Paths

A 1-partition is a constant function, achieving the same result as fixing the wire to
a value in a value injection experiment. We use 2-partitions to reduce the case of larger
alphabets to the binary case. Note that the 2-partitions of a binary alphabet include the
identity and the two constant functions, but not the negation function.

If D is a value distribution and f is an alphabet transformation, then f(D) is the value
distribution in which

(f(D))(σ) =
∑
τ∈Σ

D(τ)(f(τ))(σ).

A function injection experiment is a mapping e with domain W that assigns to each
wire the symbol ∗ or a symbol from Σ or an alphabet transformation f . Then e leaves w free
if e(w) = ∗, fixes w if e(w) ∈ Σ, and transforms w if e(w) is an alphabet transformation f .
We extend the ordering ≤ on experiments by stipulating that each alphabet transformation
f ≤ ∗. A 2-partition experiment is a function injection experiment in which every
alphabet transformation is a 2-partition.

We now define the joint probability distribution on assignments of symbols from Σ to
wires determined by a function injection experiment e. If e fixes w, then w is just assigned
e(w). Otherwise, if the inputs of w have been assigned the values σ1, . . . , σk and f is the
gate function for w, we randomly and independently choose a symbol σ according to the
value distribution f(σ1, . . . , σk). If w is free in e, then σ is the symbol assigned to w;
however, if e(w) is an alphabet transformation, then a symbol τ is chosen randomly and
independently according to the value distribution e(σ) and assigned to w. That is, when
e(w) is an alphabet transformation, we generate the symbol for w as though it were free,
and then use the distribution e(w) to transform that symbol. Because C is acyclic, this
process assigns a symbol to every wire of C.

In a function injection query (FIQ), the learning algorithm gives a function injection
experiment e and receives a symbol σ assigned to the output wire of C by the probability
distribution defined above. A functional test path for a wire w is a function injection
experiment in which the free and transformed wires are a directed path in the circuit graph
from w to the output wire, and all other wires are fixed.

As an example of how functional test paths help in learning non-Boolean probabilistic
circuits, consider again the circuit in the proof of Lemma 8, depicted in Figure 3. We
specify a functional test path p by p(w1) = p(w4) = p(w5) = ∗, p(w3) = 0 and p(w2) is the
alphabet transformation 0→ 0, 1→ 0, and 2→ 2. Note that the alphabet transformation
is a 2-partition. Then C(p|w1=0) = 0 but C(p|w1=2) = U({0, 1}), so this functional test
path witnesses a difference of 1/2, as large as the experiment that leaves all the wires free.
Test paths with functions allow us to carry over the results of Lemma 10 to non-Boolean
alphabets.

Lemma 20 Let C be a probabilistic circuit, e be a function injection experiment, w be a
wire free in e and D1, D2 be value distributions. If there exists ε ≥ 0 such that for all
functional w-test paths p ≤ e that are 2-partitions,

d(C(p|w=D1), C(p|w=D2)) ≤ ε,

then
d(C(e|w=D1), C(e|w=D2)) ≤ κ(e, w) · ε.

29

Angluin, Aspnes, Chen, Eisenstat and Reyzin

Proof The obstacle in Lemma 10 is that when the alphabet is non-Boolean, we may
assume only that D1 and D2 have disjoint support, not that they are deterministic. This
obstacle can be overcome by injecting a 2-partition at w. Let Σ1 = support(D1) and
Σ2 = support(D2) and assume Σ1 ∩ Σ2 = ∅. Then

d(C(e|w=D1), C(e|w=D2)) ≤
∑
ρ1∈Σ1
ρ2∈Σ2

D1(ρ1)D2(ρ2)d(C(e|w=ρ1), C(e|w=ρ2))

by the triangle inequality. Let

(σ, τ) = arg max
ρ1∈Σ1
ρ2∈Σ2

d(C(e|w=ρ1), C(e|w=ρ2))

so that

d(C(e|w=D1), C(e|w=D2)) ≤ d(D1, D2)d(C(e|w=σ), C(e|w=τ)).

Let f be an alphabet transformation that maps Σ1 to σ and Σ2 to τ and all other symbols
to either σ or τ . Then f is a 2-partition, and

d(C(e|w=D1), C(e|w=D2)) ≤ d(C(e|w=f(D1)), C(e|w=f(D2))).

Since f(D1) = σ and f(D2) = τ , the rest of the proof goes through.

Corollary 21 Let C be a transitively reduced probabilistic circuit, e be a function injection
experiment, w be a wire, and D1, D2 be value distributions. If there exists ε ≥ 0 such that
for all functional w-test paths p ≤ e,

d(C(p|w=D1), C(p|w=D2)) ≤ ε,

then
d(C(e|w=D1), C(e|w=D2)) ≤ π(e, w) · ε.

We expect that a further generalization of the Probabilistic Circuit Builder algorithm
to use function injection experiments can learn non-Boolean circuits of logarithmic depth
and constant fan in in polynomial time. The universal set would map wires to the set
containing all alphabet symbols from Σ and all 2-partitions of Σ, of which there are fewer
than |Σ|22|Σ|. Thus, the universal set will still be of size nO(1), suggesting that a polynomial
time algorithm may be attainable in this case.

Certain other natural questions arise in response to the idea of function injection ex-
periments. We can define circuits C and C ′ to be strongly behaviorally equivalent if
C(e) = C ′(e) for every function injection query e. Does behavioral equivalence imply strong
behavioral equivalence? Once again, alphabet size determines the answer: no for alphabet
size greater than two, yes for alphabet size two.

Lemma 22 For Σ = {0, 1, 2}, there exist deterministic circuits C1 and C2 that are behav-
iorally equivalent but not strongly behaviorally equivalent.

30

Learning Acyclic Probabilistic Circuits Using Test Paths

Proof In both C1 and C2 there are two wires w1 and w2, where w2 is the output wire. In
both circuits the gate for w2 has input w1 and deterministically maps 0 to 0 and maps 1
and 2 to 1. In C1, w1 is the constant 1 and C2 it is the constant 2.

Then if e is the value injection experiment that leaves both wires free, C1(e) = 1 = C2(e).
If e fixes either w1 or w2, then also C1(e) = C2(e). Thus C1 is behaviorally equivalent to
C2.

However, the 2-partition function injection experiment e that leaves w2 free and maps
the output of w1 according to the transformation 0→ 0, 1→ 0, 2→ 2 yields C1(e) = 0 and
C2(e) = 1. Thus C1 is not strongly behaviorally equivalent to C2.

However, 2-partition function experiments suffice to establish strong behavioral equiva-
lence.

Lemma 23 Let C and C ′ be probabilistic circuits with the same alphabet Σ, the same set of
wires and the same output wire. If C(e) = C ′(e) for every 2-partition function experiment
e then C and C ′ are strongly behaviorally equivalent.

Proof By a generalization of the Probabilistic Circuit Builder algorithm to functional test
paths.

Because in the Boolean case every 2-partition function injection query is a value injection
query, we then have the following.

Corollary 24 For Boolean probabilistic circuits C and C ′, if C is behaviorally equivalent
to C ′ then C is strongly behaviorally equivalent to C ′.

9. Discussion and Open Problems

These results concern general probabilistic acyclic gates, with no restriction other than fan-
in on the kinds of probabilistic gate functions considered. Particular domains may warrant
specific assumptions about the gate functions, which may make the learning problems more
tractable. For example, for the problem of learning the structure of an independent cascade
social network using exact value injection queries, a query-optimal algorithm is presented
by Angluin et al. (2008c). Note that social networks may in general contain cycles, which
complicates their analysis.

The Distinguishing Paths algorithm (Angluin et al., 2008b) learns transitively reduced
acyclic deterministic circuits over polynomial size alphabets with constant fan-in and no
depth bound using value injection queries in polynomial time, and relies on a version of
the test path lemma. Theorem 19 shows that if BPP 6= NP then this algorithm does
not generalize to arbitrary transitively reduced Boolean probabilistic circuits, but there is
a possibility that it might generalize to transitively reduced Boolean probabilistic circuits
with a polynomial bound on the total number of directed paths in the circuit graph. A
somewhat technical open question is whether in the case of general Boolean probabilistic
circuits, the ability to inject the NOT function might reduce the maximum path attenuation
to just the number of paths, as it does in the case of the circuit in Figure 6.

31

Angluin, Aspnes, Chen, Eisenstat and Reyzin

Acknowledgments

James Aspnes acknowledges the support of NSF grant CNS-0435201. This work was
done while Jiang Chen was a member of the Center for Computational Learning Systems,
Columbia University; he acknowledges the support of a research contract from Consolidated
Edison. Lev Reyzin acknowledges that this material is based upon work supported under
a National Science Foundation Graduate Research Fellowship. A preliminary version of
this paper was presented at COLT 2008 (Angluin et al., 2008a). The authors thank the
reviewers of the COLT 2008 version of the paper and the referees of the present paper for
their thoughtful comments.

References

Tatsuya Akutsu, Satoru Kuhara, Osamu Maruyama, and Satoru Miyano. Identification of
genetic networks by strategic gene disruptions and gene overexpressions under a boolean
model. Theor. Comput. Sci., 298(1):235–251, 2003.

Dana Angluin and Michael Kharitonov. When won’t membership queries help? J. Comput.
Syst. Sci., 50(2):336–355, 1995.

Dana Angluin, James Aspnes, Jiang Chen, David Eisenstat, and Lev Reyzin. Learning
acyclic probabilistic circuits using test paths. In Twenty-First Annual Conference on
Learning Theory, pages 169–179. Omicron, July 2008a.

Dana Angluin, James Aspnes, Jiang Chen, and Lev Reyzin. Learning large-alphabet and
analog circuits with value injection queries. Machine Learning, 72(1-2):113–138, 2008b.

Dana Angluin, James Aspnes, and Lev Reyzin. Optimally learning social networks with
activations and suppressions. In Nineteenth International Conference on Algorithmic
Learning Theory, volume 5254 of Lecture Notes in Computer Science, pages 272–286,
October 2008c.

Dana Angluin, James Aspnes, Jiang Chen, and Yinghua Wu. Learning a circuit by injecting
values. J. Comput. Syst. Sci., 75(1):60–77, 2009.

Nir Friedman, Michal Linial, Iftach Nachman, and Dana Pe´er. Using Bayesian networks
to analyze expression data. J. Comput. Biol., 7(3–4):601–620, 2000.

Johan H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.

Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bull. Amer. Math. Soc. (N.S.), 43(4):439–561 (electronic), 2006.

Trey E. Ideker, Vesteinn Thorsson, and Richard M. Karp. Discovery of regulatory inter-
actions through perturbation: Inference and experimental design. In Pacific Symposium
on Biocomputing 5, pages 302–313, 2000.

32

Learning Acyclic Probabilistic Circuits Using Test Paths

David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing the spread of influence
through a social network. In KDD ’03: Proceedings of the Ninth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pages 137–146, New York,
NY, USA, 2003. ACM.

David Kempe, Jon M. Kleinberg, and Éva Tardos. Influential nodes in a diffusion model
for social networks. In ICALP, pages 1127–1138, 2005.

Judea Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press,
2000.

33

